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Chapter 1

Introduction

1.1 Presentation of the field of the doctoral thesis

Ongoing global climate change is producing long-term impacts involving various hazards
that are rapidly turning into disasters, from longer periods of drought with more frequent
wildfires to massive flooding due to rapid melting of upstream snow and ice, or increased
duration and intensity of tropical storms [7]. Therefore, in order to effectively minimize
the impact of hazards on people and nature, automatic extraction of information from
satellite imagery for early identification of a hazard and damage assessment, is essential
in critical situations.

1.2 Scope of the doctoral thesis

The thesis aims to design efficient methodologies for extracting and modeling latent
information from massive volumes of satellite data, with the purpose of automatically
assessing and detecting disastrous events on the Earth’s surface.

1.3 Content of the doctoral thesis

Chapter 2 presents an introduction to the fundamental field of remote sensing. Chapter
3 describes a solution based on data compression via the Normalized Compression
Distance (NCD) metric to detect changes produced by floods in Synthetic Aperture
Radar (SAR) image time series. Chapter 4 introduces two statistical deep learning
approaches for detecting wildfire affected areas by anomalous deviations from the
normal probability distribution of the background data in satellite multispectral scenes.
Chapter 5 outlines a statistical anomaly detection model developed and optimized for
an Field Programmable Gate Arrays (FPGA) device, suitable for on-board integration
and immediate detection of wildfire outbreak in satellite multispectral scenes. Chapter 6
covers thesis contributions, list of published articles and future perspectives.



Chapter 2

Basics in remote sensing

The concept of remote sensing refers to any instrument used to observe the state and
condition of an object, from a distance, situated on the Earth’ surface. The radiant
energy generated by the reflection of an incident energy, coming from the Sun or merely
artificially generated, is recorded by on-board sensors, stored and transmitted to the
ground station for processing image data. Sensor systems are classified according to how
they detect electromagnetic energy, i.e., passive sensors which sense radiations generated
by external sources, and active sensors that transmit their own energy to the target and
then capture the reflection [7]. Satellite sensors are designed to capture data in different
parts of the electromagnetic spectrum under different system constraints, i.e., spectral
resolution, temporal resolution, spatial resolution and radiometric resolution.

The first satellite for detailed, high-resolution observation of the Earth’s entire surface
was Landsat 1, launched in 1972, as part of the Landsat programme, which still continues
to provide reliable and uninterrupted remote sensing data, essentially as a reference for
evaluating long-term changes in the Earth’s terrestrial environment [37]. Sentinel-2 is an
European multispectral imaging mission comprising twin satellites, flying in the same
orbit, with temporal resolution of 5 days at the equator. The Multispectral Instrument
(MSI) placed on-board Sentinel-2 platform samples 13 spectral bands [21]. TerraSAR-X
is a German Earth observation satellite, with a main payload X-band radar sensor, which
records SAR images with a resolution of up to 1 m, regardless of weather conditions,
cloud cover or lack of daylight. Applications targeted by this mission include change
detection, surface movement monitoring and emergency response information, among
others [13].

Various materials on the Earth’s surface reflect and emit energy in different parts of
the spectrum [21]. The information in all spectral bands can be placed in RGB color
channels to reveal different kinds of information about a scene, also there convenient
combinations to extract particular information, e.g., moisture levels in vegetation by
combining Near InfraRed and Short-Wave InfraRed bands in Figure 2.1, where high
values mean wetter vegetation, while low values mean that plants are stressed due to
insufficient moisture. Although optical imagery has tremendous potential for mapping,



Fig. 2.1 Bucharest, Romania. Convenient combinations to display vegetation moisture
index using Sentinel-2 bands.

with improved analysis capability and high image accuracy, under challenging weather
conditions the adoption of SAR sensors has shown significant potential in mapping
cloud-covered areas.

2.1 Overview of hazards

There are multiple types of hazards, caused naturally or by human intervention. Large
scale hazards, detectable from satellites [29] are listed:

• Floods are the most destructive and expensive natural disasters, with the highest
negative effect on people compared to other natural disasters.

• Forest Fires are one of the world’s most devastating natural hazards, contributing
to global warming, economic losses and ultimately loss of life.

• Volcanic Eruptions generate effects ranging from covering the landscape with
volcanic ash to gases injected into the atmosphere, leading to climate change.

• Earthquakes strike without warning and inflict substantial damage in a short time.

• Typhoon is a strong tropical cyclone with large rotating thunderstorms blowing at
over 100 km/h with unpredictable trajectories.

• Landslides occurs in mountainous regions as a result of severe storms, volcanic
eruptions or earthquakes.

• Oil Spills are caused every year through deliberate illegal activities or accidents
such as the damage of oil pipelines.
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A single satellite can miss a natural disaster as it happens, but a heterogeneous
constellation of multiple satellites already in orbit can drastically reduce the revisiting
period and provide images from any location at any time. The International Chapter
Space and Major Disasters [29] service and Copernicus Emergency Management Service
(EMS) [12] provide access to satellite imagery during major disasters, which, combined
with intelligent detection solutions, generates a major benefit in disaster control.

2.2 Overview of change detection

With massive amounts of data available, simultaneously with increasing computational
demands, there is a need to automatically compare two satellite images and determine the
locations of changes in a way that involves less time, fewer computational steps and less
human interaction. Change detection (CD) solutions extract time-dependent information
from targets of interest in the same geographical area by using multi-temporal images.
These solutions are used in various fields, such as agricultural surveys, forest monitoring,
hydrological studies or disaster assessment [3].

Time series of SAR images are widely used in CD methodologies, usually by
calculating the pixel-by-pixel ratio of two consecutive SAR images [39]. The resulted
difference image requires the selection of an optimal threshold value to separate the
changed from unchanged pixels [54]. The high learning capacity of Deep Neural
Networks (DNN) has enabled the use of stacked autoencoders (SAE) [42], or symmetric
models [56] in the context of CD in SAR images. In real scenarios, there are situations
where the pre-event image in the time series is unusable or the acquisition is too old,
making it impossible for a classical CD algorithm to identify a possible change at ground
level. Thus, changes should only be identified from the post-event image, where deviant
samples are interpreted as anomalies.

2.3 Overview of anomaly detection

Anomalies are patterns in data that do not correspond to a robust defined perception of
normal behavior. The definition of data normality is closely related to the domain under
analysis, from a priori known geometric patterns on a production line to land cover
classes commonly found on the land surface. Abnormality in the data can appear at the
sensor level with artifacts, due to measurement variability, momentary errors or noise,
or in the observed scene, semantic anomalies, due to objects deviating from the whole
scene.

Classical concepts for unsupervised anomaly detection (AD), extended across mul-
tiple disciplines (e.g., statistics, medicine, engineering, natural sciences), consists of
Principal Component Analysis (PCA), nearest neighbor algorithms, the One-Class Sup-
port Vector Machine (OCSVM), and Support Vector Data Description (SVDD), among
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others. Because of the labor intensive and nearly impossible work of labeling data in
order to characterize all anomalies in real scenarios, a dominant solution for detecting
anomalies is to learn a model from normal data distribution and try to deflect anomalies.

2.3.1 Ground-based applications

Satellite data processing is mostly done on the ground, with delayed feedback in appli-
cations due to the progressive way of data collection. In remote sensing (RS) scenes,
anomaly detection algorithms address a discovery task of small-scale portions that do
not harmonize with the background, generally defined by the classes normally found
on the Earth’ surface. The effects produced by natural disasters are anomalies on the
Earth’s surface, with high-scale damaging potential.

Event detection in Earth science is often critical for immediately addressing negative
impacts on natural resources, e.g., drought-related vegetation disturbances [48], devas-
tating floods [10], active fire detection [43]. Wildfire is an extreme natural hazard that
caused serious damages in human safety and natural ecosystems in recent years [11].

2.3.2 Space-based applications

In harsh environments, space-based missions must process huge amounts of information
with limited resources. Automatic data processing near the sensor [20], immediately after
acquisition, can reduce the information flow to ground stations and detect anomalous
ground-level events early. Small-satellite missions embed Field-Programmable Gate
Arrays (FPGAs) chips with programmatic flexibility, parallel processing and energy
efficiency. System-on-chip (SoC) hybrid devices [52] include a processing unit and an
FPGA on a single chip, implementing common space application on a single device.

PhiSat-1 nanosatellite mission [22] was the first Earth observation satellite with
artificial intelligence (AI) on-board, used to maximize the relevant information to be
downlinked by the Ground Segment [27]. The PhiSat system used an on-board Convolu-
tional Neural Network (CNN) model to detect clouds in the images, followed by filtering
and discarding unusable images and delivering only operable data [26].

On-board image processing requires reduced dimensions and limited power con-
sumption for hardware components. FPGA device outperform Graphics Processing Unit
(GPU) device in terms of power consumption with little sacrifice in performance. The
FPGA dynamic reconfiguration capability, which permits dynamic adaptation of the
specific problem to changing conditions, is an attractive specific feature for on-board
computing.
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Chapter 3

Unbiased seamless SAR image change
detection based on NCD

3.1 NCD metric for change detection

This chapter proposes a methodology for detecting flood changes in satellite time
series using data compression. Normalized Compression Distance (NCD) is a universal
parameter-free metric successfully applied as a similarity measure for unstructured
data. NCD is the computable form of Normalized Information Distance (NID) [2],
which is based on Kolmogorov complexity [34]. In information theory, the Kolmogorov
complexity of an object is the minimum size of a computational program that produces
the same object at output. Li et al. [33] proposed a suitable approximation for the NID
by replacing the Kolmogorov operator with the lower bound of a real compressor, e.g.,
bzlib, zlib. Two objects are considered close if a process can meaningfully compress
one of them given the information in the other, i.e., if two slices of data are more similar,
then one slice can be described more succinctly using the other [9]. For two objects x
and y, the NCD metric defined as

NCD(x,y) =
C(x,y)−min(C(x),C(y))

max(C(x),C(y))
, (3.1)

where C(x,y) is the compression dimension of the concatenation of x and y, C(x) and
C(y) are the compressed dimension of x and y respectively. The NCD metric can be
adopted to compute similarities between any two objects, exploiting the intrinsic power
of data compression to fit recurrent patterns. The value of NCD(x,y) is a positive number,
i.e., 0 < NCD(x,y)< 1+e, which represents how different the two objects are. The error
e occurs for two reasons, imperfections in the compression technique and the expected
effect of too noisy content of one object relative to the other [5].

CompLearn [8] is a library that integrates compression techniques into the process
of discovering and learning patterns. This library can compute an NCD matrix for



(a) (b)

Fig. 3.1 Sendai dataset with amplitude SAR images, pre-event image (a) and post-event
image (b), acquired by TerraSAR-X satellite. Sendai1024 subset in 1024x1024 pixel
sub-images.

(a) (b)

Fig. 3.2 Stendal dataset with amplitude SAR images, pre-event image (a) and the post-
event image (b), acquired by TerraSAR-X satellite.

a collection of heterogeneous samples with different compressor variants. A faster
approach has been proposed in [45] using a compressor optimized for running on the
GPU, achieving an increase in compression speed with a small decrease in accuracy.

This chapter presents two methods that compute a difference image (DI) from the
time series of two SAR images using the NCD operator (3.1) with the bzlib algorithm for
image compression. Further, the DI is used to create a binary change map that highlights
the flood affected areas in a scene. It is worth mentioning that all the methods proposed
in this thesis work at patch level.

3.2 Study areas and Datasets

In the context of hazard assessment, time series contain a first image acquired before a
natural hazard (pre-event) and a second image acquired immediately after the hazard
(post-event). Two scenes containing the devastating effects of a tsunami (Figure 3.1) in a
shoreline part of Sendai, Tohoku region, Japan, respectively the effects of a flood caused
by the overflow of the Elbe river (Figure 3.2) in the Stendal district, Germany. Both
datasets, Sendai and Stendal, were first studied in [16] using an interactive, automatic
and fast processing chain tool, applicable to large and complex datasets. The input data
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(a) (b)

Fig. 3.3 Methodologies for unsupervised change detection (a) and supervised change
detection (b).

was in the form of collections of sub-images, i.e., patches, each generated from an initial
scene that was divided into sub-images via a non-overlapping sliding quadratic window.

3.3 Unsupervised method for change detection

In the proposed unsupervised method, the NCD operator (3.1) was used to generate a
similarity map of a series of pairs of samples, i.e., NCD similarity map (NSM). Next, a
linear transformation was applied on NSM to fit values in the range [0, 255]. Further,
the standard similarity map (SSM) was used to generate a binary change map based on
an unsupervised threshold determination (Figure 3.3a).

In this approach, the NCD metric computes the degree of similarity between two
patches from the same geographic location but at different times. Starting from the
SSM histogram values, three algorithms were implied to estimate an optimal threshold,
namely, Otsu’s method [41], Kittler’s method [31] and Kapur’s method [30].

3.3.1 Experimental results

To test the proposed unsupervised method on the Sendai1024 subset, the dimension of
patches was set to 64x64 pixels. The size 64x64 pixels is a lower bound that provides
space for pattern identification for data compression purposes.

Figure 3.4 illustrates the ranges of NCD metric results for different patch sizes, e.g.,
8x8, 16x16, 32x32, and 64x64, based on filtering iteration in the Sendai1024 subset.
Inside the range of NCD values, between minim and maxim values, were highlighted the
estimated thresholds obtained through the 3 above mentioned thresholding algorithms,
applied to the SSM. The Frost algorithm [23] was used to filter the speckle effect while
preserving edges in SAR images, in order to test the assumption that NCD operator is
noise-resistant [5].

In Table 3.1, the best result obtained on the Sendai1024 subset on different patch
sizes was given by the Kitter’s threshold algorithm with a good error rate value, i.e.,
4.20%, and a detection accuracy of 95.80% for 32x32 patch size, respectively the Otsu’s
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Fig. 3.4 Range of NCD values, minimum and maximum, and threshold values of Otsu,
Kapur and Kittler algorithms for differentiating between changed and unchanged in
Sendai1024 subset.

threshold method with a very good error rate value, i.e., 0.78%, and a very accurate
detection of 99.22% for 64x64 patch size. The fact that the best results were obtained
when no filtering iteration was applied validated that the NCD operator is resistant to the
speckle effect.

3.4 Supervised method for change detection

In the proposed supervised method, the NCD operator (3.1) was used to generate an
NCD matrix containing relational information from the entire patch collection inside
a scene. The NCD matrix information as distance information was used as input in a
modified version of k-NN classification algorithm to classify the samples. Further, a
simple differentiation algorithm on annotations, applied to the results of the two initial
scenes, produced a change map (Figure 3.3b).

3.4.1 Experimental results

The Sendai dataset has been assigned with a specific nomenclature of classes, namely
10 classes for the pre-event image and 12 classes for the post-event image. In the
supervised approach, the input patch size was set to 160x160 pixels [17]. Considering a
non-overlapping window of 160x160 pixels, resulted a collection of 5673 patches per
image for the Sendai dataset.

A ground truth map for Sendai dataset, used in the classification evaluation was
determined in [18] and manually refined in some cases. The k-NN classifier was trained
at a rate of 40% of the entire Sendai sample collection. The hyperparameter k in the

Table 3.1 Results for unsupervised CD method on Sendai1024 subset.

Thresholding
algorithm

Filtering
iterations

Patch dimension
32x32 64x64

Error Accuracy False-positive T Error Accuracy False-positive T
Kapur

0
11.04% 88.96% 10.31% 85 9.77% 90.23% 10.17% 68

Otsu 9.28% 90.72% 8.35% 91 0.78% 99.22% 0% 99
Kitter 4.20% 95.80% 2.37% 118 1.17% 98.83% 0.42% 87
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(a) (b) (c)

Fig. 3.5 Classification results on Sendai dataset. Pre-event image classification map (a),
post-event image classification map (b), binary change map (c), and the colour legend
associated with labels.

k-NN algorithm was set to 11 for pre-event classification, respectively 13 for post-event
classification (Figure 3.5).

The tsunami event generated some class transitions, namely from the Aquaculture
class to the Debris class, while the coastal Agriculture class was mostly covered by the
Flooded area class. Resulted an overall accuracy of 95.06% for the pre-event image
and 92.97% for the post-event image. In the case of the post-event image, the accuracy
was poorer because the inter-class variance for flood and debris classes was small. The
binary change map highlighted in Figure 3.5c was obtained by differencing the two
classification maps shown in Figure 3.5a and Figure 3.5b. Finally, the resulting binary
change map identified with an accuracy of 90.7% the areas that suffered changes due to
natural hazard effects.

3.5 Contributions

In this chapter, two methods have been proposed that rely on data compression to extract
distance information between all samples of a SAR scene. The distance information was
used to compute an automatic threshold, respectively to train a k-NN instance in order to
generate a binary change map.

10



Chapter 4

Hybrid DNN in Anomaly Detection

4.1 Self-supervised learning

Self-supervised learning is a promising example for learning convenient representations
without costly labels, e.g., predictive self-supervised methods that learn beneficial image
representation of the data using auto-generated labels. In remote sensing imagery,
discriminative features are extracted by focusing on both object shapes and texture
information [49]. This section proposes a hybrid anomaly detection method, a Deep
Convolutional Neural Network (DCNN) component combined with a classical Dirichlet
distribution model, which evaluates the relative anomalousness in Sentinel-2 scenes.

4.1.1 Current context

Satellite images usually incorporate many semantic variations, and lately different
variants have been defined to detect contextual anomalies, multivariate statistics by max-
imizing the representation gap between in-domain and out-of-distribution samples [24],
reconstruction-based methods [51], low-dimensional embedding followed by OCSVM
in wildfire assessment [11].

4.1.2 Methodology

Anomaly detection (AD) approaches integrate two components, a statistic that has a
known feedback to normal data distribution and a decision rule that inspects the statistic.
An anomaly detection method based on ranking is proposed in this chapter (Figure 4.1),
aiming to detect anomalies from a single observation, i.e., the post-event image.

Numerical transformations

The image preprocessing stage is done according to PreprocessData function defined
in Algorithm 1, standardization or max-normalization. In the transformation phase, a
set of discrete geometric transformations was applied on each normal sample, Fk =



Algorithm 1: Anomaly detection using numerical transformations
Input: Fk: a series of numerical transformations, gθ : multinomial classification

model
Output: scores: Anomaly scores
Data: Itrain: scene with normal data, Itest : scene with normal and abnormal data

1 Function PreprocessData(I, t):
2 (W,H,C)← size(I)
3 I← reshape(I,W ∗H,C)
4 if t = 1 then
5 {mean j}C−1

j=0 ←{
1

W∗H ∑
W∗H−1
i=0 Ii, j}

6 {stddev j}C−1
j=0 ←{

√
∑

W∗H−1
i=0 (Ii, j−mean j)

W∗H−1 }
7 {Yi, j}W∗H−1,C−1

i, j=0 ←{ Ii, j−mean j
stddev j

}
8 else
9 {Yi, j}W∗H−1,C−1

i, j=0 ←{2∗ (Ii, j/216)−1}

10 Y ← reshape(Y,W,H,C)
11 return {NonOverlappingPatching(Y )}
12

13 Function AnomalyScore(Fk, gθ , Itrain, Itest):
14 Xn← PreprocessData(Itrain,1)
15 Xan← PreprocessData(Itest ,1)
16 Xt ←{(Fj(x), j),x ∈ Xn,0≤ j < k}
17 while not converged do
18 Train gθ on labeled dataset Xt

19 i← 0
20 n← |Xn|
21 |scores| ← |Xan|
22 scores← 0
23 while i < k do
24 Xi,train←{so f tmax(gθ (Fi(x))),x ∈ Xn}
25 Xi,test ←{so f tmax(gθ (Fi(x))),x ∈ Xan}
26 m← 0
27 p← 0
28 foreach x j ∈ Xi,train do
29 m← m+ x j
30 p← p+ logx j

31 m̄← 1
nm

32 p̄← 1
n p

33 α0,i← m̄ n(k−1)(−Ψ(1))
n∑ m̄ log(m̄)−∑ m̄p

34 while not converged do
35 ᾱ0,i←Ψ−1(Ψ(∑α0,i)+ p̄)

36 scores←{scores+ 1
k ∑

k−1
j=0(ᾱ0,i−1)∗ logx j,x j ∈ Xi,test}

37 i← i+1

38 return scores

12



Fig. 4.1 General architecture of the anomaly detection method based on ranking. The data
processing module, blocks Image preprocessing and Transformation, takes a Sentinel-2
Level-2A image as input and generates a collection of scaled and geometrical transformed
non-overlapping patches. The self-supervised classifier is trained to differentiate between
k geometrical transformations employed in block Transformation. A ranking estimation
module takes a product between a softmax response vector and a Dirichlet precision
computed for each transformation involved and outputs an anomaly score that is finally
used in a binary decision.

{ f , f (x, f lip, tx, ty, rk) : X → X i, i ∈ [0, k− 1], f lip ∈ { f alse, true}, (tx, ty) ∈
Z, rk ∈ {0, 1, 2, 3}}, where terms f lip, (tx, ty), rk parametrize common geometric
transformations like flip, translation, respectively rotation. Parameter rk represents the
number of counter-clockwise rotations with 90°. A transformed image is generated by
applying three transformations at a time. Further, the ranking function is defined as

rc(x) =
k−1

∑
i=0

log p(so f tmax(gθ (Fi(x)))|Fi), (4.1)

where a combined log-likelihood of inference result log p(y|Fk), conditioned on each of
the adapted transformation in Fk, under an estimated distribution of normal samples is
implied.

Dirichlet Distribution

In the interest of its tractable analytic properties, Dirichlet distribution is preferred as a
prior distribution in Bayesian learning [25]. A m-dimensional Dirichlet random variable
p = (p1, ..., pm) describes a distribution over m classes and takes values in the (m−1)-
simplex if pk ≥ 0,1≤ k ≤ m and ∑

m
k=1 pk = 1. The random variable p has the following

probability density (4.2) on (m−1)-simplex
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Dir(p|α) =
Γ(α0)

∏
m
k=1 Γ(αk)

m

∏
k=1

pαk−1
k ,α0 =

m

∑
k=1

αk, (4.2)

where the parameter α is an ensemble of concentration components αk > 0, α0 is
the precision of the distribution, p is a vector of probabilities and Γ(·) is the Gamma
function. Dir(α) variation over a (m− 1)-simplex of admissible values of p for a
given input α , projects conditional distribution over normal samples. The parameter
vector α can be approximated from a training collection of observed multinomial data,
D = {p1,p2, ...,pN} by maximizing the log-likelihood function of D, which is given by

G(α) = N(logΓ(∑
k

αk)−∑
k

logΓ(αk)+
1
N ∑

k
(αk−1)∑

i
log pik). (4.3)

Fixed Point Iteration method [38] provides a convergent fixed point iteration pro-
cedure for estimating parameters αk. The initial guess for α is based on Maximum
Likelihood Approximation (MLA) method [50]. The maximization of a lower bound on
the likelihood, which is tight at α , determines the new prediction (4.4) as

α
new
k = Ψ

−1(Ψ(∑
k

α
old
k )+

1
N ∑

i
log pik), (4.4)

where Ψ = d logΓ(x)
dx is the digamma function which can be inverted by using a Newton-

Raphson update procedure.
In Algorithm 1, line 33, is used MLA to compute the precision of the Dirichlet

distribution, i.e., α0. Digamma function Ψ(·) is the first derivative of the log Gamma
function and it is used to converge to the maximum, the only stationary point in Dirichlet.
The inverse of the digamma function is calculated numerically (lines 34-35) using five
Newton-Rapshon iterations. In (4.3), first two elements can be reduced as they are
invariant relative to pk, resulting in a rewriting of (4.1) as

rc(x) =
k−1

∑
i=0

(ᾱi−1) log(so f tmax(gθ (Fi(x)))). (4.5)

4.1.3 Study areas and Datasets

Fire is a recurring part of nature with good things and bad aspects. In 2019, numerous
alarming wildfires have been triggered causing unprecedented damage.

BigEarthNet dataset

BigEarthNet [46], [47] is a benchmark archive, consisting of 590,326 Sentinel-2 patches,
acquired between June 2017 and May 2018 over 10 countries of Europe. BigEarthNet is
a multi-label dataset with 43 imbalanced labels. A subset of all patches containing at
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(a) (b) (c) (d) (e) (f)

Fig. 4.2 Three pairs of two images each, from left to right, BigEarthNet test (first),
Robore (second) and Sydney (third) datasets.

least the labels Mixed forest, Coniferous forest, Broad-leaved forest and Pastures from
original BigEarthNet, containing 2570 samples, was used to create a training dataset (i.e.,
random 2400 samples or 93.4%) and a test dataset (i.e., the rest of 170 samples or the rest
of 6.6%). In above mentioned test dataset, another 29 specific samples containing at least
the labels Mixed forest, Broad-leaved forest and Burned areas, filtered out from entire
BigEarthNet dataset, were added to result BigEarthNet test subset with 199 samples.
The training dataset, i.e., BigEarthNet train, was used both for the training phase and
as observed data to estimate the Dirichlet distribution parameters. In Figures 4.2a
and 4.2b show a BigEarthNet patch in two different visualizations, containing burned
areas highlighted in red-burgundy. The ground truth map was estimated from the label
collection provided for each sample, where all samples that contained label Burned areas
were considered anomalous.

Burned area datasets

Each created bellow dataset is a subarea of 72 km x 72 km generated from a Sentinel-
2A product, with pre- and post-event images to generate a ground truth map through
classical spectral indices, namely, the Normalized Burn Ratio (NBR), the Normalized
Difference Water Index (NDWI), the Relativized Burn Ratio (RBR). Each dataset was
tiled in non-overlapping patches, using a size of 120x120 pixels.

Robore

The original scene swept a south-east area of Robore town, Bolivia, South America.
Figures 4.2c and 4.2d depict an anomalous sample in true-color composite (TC) and
false-color (FC) composite, with the burned area highlighted in red-orange.

Sydney

The original scene swept a south-west area of Sydney town (Wollongong), New South
Wales, Australia. Figures 4.2e and 4.2f exhibit an anomalous sample in TC composite
and FC composite, with the burned area highlighted in light red and red-orange.

The computed RBR value range was [−4.23,0.93] (Robore), respectively [−87.65,0.98]
(Sydney), and based on Otsu’s thresholding method [41], resulted a threshold of 0.2596,
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(a) (b) (c) (d) (e) (f)

Fig. 4.3 Two sets of three images each, from left to right, Robore scene (first), Sydney
scene (second).

respectively 0.2725 on the RBR histogram. The binary threshold condition in the RBR
histogram yields a pixel-level truth map (Figures 4.3c and 4.3f), used to achieve a patch-
level truth map through a simple condition: if more than 50% pixels are anomalous, the
entire patch is considered anomalous.

4.1.4 Experiments

The proposed architecture was implemented in the open-source Keras deep learning
framework with a Tensorflow backend. The conducted experiments included 72 trans-
formations, i.e., k = 72, consisting of translations with {0, ± 30} pixels (reflect mode),
counter-clockwise rotations with 90° and flipping in the left/right direction. A deep
72-class classification model was trained on BigEarthNet train dataset to learn semantic
features in a self-supervised manner. The classification model was build based on resid-
ual learning, ResNet-50 backbone [28]. ResNet-based networks are more applicable
for self-supervised representation learning, preserving representations from degrading
towards the end of the network [32]. The 72-class classification model gθ was trained
for 50 epochs, with batch size equal to 600 samples, in 2h and 50 minutes. Fixed point
Dirichlet maximum likelihood estimation function used maximum 1000 iterations and
converged when L2 norm on Dirichlet parameters’ iterations was less than 1e−9.

(a) (b) (c) (d)

Fig. 4.4 Average precision AUROC results on standardization (a) and max-normalization
(b) preprocessing methods. Average precision AUPR results on max-normalization
preprocessing method when burned area is studied as the positive class (c) and negative
class (d).
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Fig. 4.5 Probability distributions of scores for Sydney (left) and Robore (right) datasets.

Results

In Figures 4.4a and 4.4b, the BigEarthNet test dataset performed well from the very first
transformation, with small drops in performance as more transformations were included,
while Robore and Sydney started with poor classification results but improved as more
transformations were processed. Area Under Precision-Recall (AUPR) is implied to
compute an average precision per transformation index when prior knowledge on the
proportion of anomalies is available, considering the anomaly sequentially both classes,
i.e, positive case, and negative case. Better performance is achieved when the anomaly is
operated as negative class on all three test datasets (Figures 4.4c and 4.4d). The results
are presented for the first 16 geometrical transformations.

Probability distributions of scores for Sydney and Robore are displayed in Figure 4.5
in overlay mode. Distributions of scores for Sydney and Robore datasets are bimodal
and trimodal, respectively. Through computing the second derivative of probability
density function, the obtained inflection points determinated an optimal threshold for
each histogram, 90725.44 for BigEarthNet test dataset, 128987.73 for Sydney dataset,
respectively 193960.43 for Robore dataset.

Table 4.1 Accuracy assessment for the testing datasets using the proposed model (DCNN-
Dirichlet) and a parameter-free model (NCD)

Dataset Method Precision Recall F1-score

BigEarthNet test
NCD 0.964 0.714 0.781

DCNN-Dirichlet 0.930 0.941 0.935

Robore
NCD 0.960 0.823 0.877

DCNN-Dirichlet 0.986 0.885 0.933

Sydney
NCD 0.948 0.845 0.888

DCNN-Dirichlet 0.977 0.970 0.974
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In the Table 4.1 different metrics are presented to compare the results obtained by the
proposed method and a state of the art method, parameter-free NCD method. Each test
dataset was randomly split in ratio 60:40, and based on an NCD matrix computed for
each test dataset, a binary nearest neighbors classifier was run on a 2-D space, where each
dimension represented the average distance from normal class, respectively abnormal
class.

4.2 Unsupervised learning

Anomaly detection methods in imagery focus on spectral and spatial discrimination,
using statistical models [14], collaborative representation [35], or deep neural network-
based anomaly detection models [6]. Autoencoders compute reconstruction errors be-
tween a restored image and the original input image. Being trained on normal background
data, anomalies are expected to have large reconstruction errors, while background has
small reconstruction errors [36]. In this section, is introduced a method that estimates
anomalies in Sentinel-2 data based on the potential of an autoencoder reconstruction
ability.

4.2.1 Methodology

The proposed methodology relied heavily on a ResNet [28] encoder-decoder architecture
(Figure 4.6a). The covariance matrix of each input was computed to be used as a
strong spatial feature on downstream classification. The latent data extracted from the
autoencoder embedded space is ultimately used to train an OCSVM instance.

(a) (b)

Fig. 4.6 Overview of the proposed method consisting in three modules, deep feature
extraction, covariance matrix feature and OCSVM outlier detector (a). Sentinel-2 image,
Robore, Bolivia, 23 August 2019 in FC representation (B12, B11, B9) (b).
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Table 4.2 Evolution of AUPRC based on anomaly quantity.

Burned patches (#) Burned patches in dataset (%) AUPRC [0-1]
7 0.9 0.46

15-53 1.94-6.8 0.54-0.66
61 7.9 0.71

69-77 8.9-9.9 0.72

Model

An autoencoder encodes the input tensor into a lower dimensional latent representation,
then decodes the latent representation back to an resemblant tensor, all with a minimum
reconstruction error. The standard ResNet-18 [28] network was used with the first layer
adapted to 12 input channels. For the input data, bicubic interpolation was performed for
20m and 60m resolution channels.

Datasets

BigEarthNet (4.1.3) was used to train the model. For testing, an area of 109,8 km x
30 km (Figure 4.6b) was divided into non-overlapping patches using the size 120x120
pixels.

4.2.2 Experiments

An experiment was conducted using a test dataset containing 771 normal and 77 abnormal
patches, from the left half of the scene in Figure 4.6b. The test dataset started with
0.9% abnormal data and iteratively incremented with by ∼0.9% until all 77 available
abnormal tiles were included. The OCSVM training process involved only normal data,
from BigEarthNet, and the ratio of normal to abnormal areas was empirically set to 0.7.

In Table 4.2 is highlighted the evolution of AUPR Curve based on the abnormal
data percentage included in test dataset. Under 2% anomalous patches in dataset, the
classifier is not able to distinguish between positive and negative class points. For 7.9%,
an accuracy of 0.71 is achieved.

4.3 Contributions

In this chapter, a DCNN-Dirichlet model has been proposed that detects anomalies in the
post-event image. In addition, the DCNN-OCSVM model that identifies burned areas
based on reconstruction ability has been presented.
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Chapter 5

Meta-Recognition Anomaly Detection
Hardware Accelerator on FPGA

This chapter proposes a methodology that relocates the computational effort on-board
the satellite for detecting natural disaster of wildfires in multispectral imagery.

5.1 Current context

On-board real-time classification and detection methods for remote sensing imagery are
based on different techniques, the computation of data covariance matrix and their inverse
[15], orthogonal projection strategy [19, 4], linewise progressive anomaly detection [55],
and lately AI [27].

5.2 Methodology

In this chapter, an algorithm has been proposed to extend the latent features extracted
from satellite imagery through probability estimation, aiming to associate deviant sam-
ples to an anomalous class. Two stages are performed, implementation, training and
testing the algorithm on a GPU cluster (Figure 5.1 (left)), followed by an optimization
and deployment flow of the algorithm on an FPGA device (Figure 5.1 (right)).

In Figure 5.1 (left), a deep convolutional neural network (DCNN) classifier is trained
on observed data and used as a feature extractor. Background statistical features are
approximated by fitting Weibull distributions on each observed class in the training
dataset, concerning a distance metric to determine a threshold for a binary decision. This
methodology is related to the Meta-Recognition concept proposed in [1]. In Figure 5.1
(right), the deployment flow involved the Vitis AI Framework, to convert a Tensorflow
DCNN model into a compatible format supported by the Deep Learning Processing Unit
(DPU) [53] engine. After training, the frozen graph was quantized and compiled into an



Fig. 5.1 Host application for anomaly detection (left), flowchart for the optimization and
deployment of the on-board anomaly detection accelerator (right).

inference-only model that is called by the host application and run on a specific FPGA
target board.

5.2.1 Meta-Recognition

Meta-Recognition [44] is a prediction method that uses statistical extreme value theory
(EVT) for post-recognition score analysis. Basically, a statistical classifier based upon
the Weibull distribution [44] is substantially better than a standard threshold test over the
original score data. Recognition may be assimilated with the open set attribute of a real
world classifier that rejects unseen classes at query time. For Weibull fitting, the FitHigh
function is used, which is available in the libMR library [44].

Remote sensing images need a rich characterization through multi-labeling, a con-
volutional classifier with a Sigmoid function as the last activation layer. A multi-label
feature extractor is trained on normal classes Ci, 1≤ i≤ k to compute for each class the
corresponding MAV, µi = mean(vi j), 1≤ i≤ k, 1≤ j ≤ |Ci| using the activation vector
v. With Sn was noted the set of indexes, in descending order, of the highest n probabilities
generated by a final Sigmoid layer on activation vector v. Next, for each class Ci, a
Weibull model ρCi = (τCi,λCi,κCi), 1 ≤ i ≤ k with three parameters, data shifting τ ,
Weibull scale λ , respectively Weibull shape κ , is computed. Parameter τ is dynamic and
depends on data itself, i.e., is the smallest score (distance) on tested activation vector
v, aiming to shift v in zero (5.1a). Model ρCi(x) provides meta-recognition estimated
probability that determines if query sample x is anomalous or not.

In the second phase, the activations of a query sample x adjust α top activations, i.e.,
α top probabilities given by a Sigmoid layer, by approximating the Weibull distribution
function (5.1a)

wi(x) = 1− f (i)(1− e−(
x−τi

λi
)
κi

), 1≤ i≤ k, (5.1a)
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f (i) =


α+1−ranki(Sα (v))

α
if i ∈ Sα(v)

0 otherwise
. (5.1b)

After computing Weibull CDF on the distance between query sample x and MAVs of α

top activations, revised activation vector is computed (5.2a), where operator ◦ is used for
the scalar product between two vector.

v̂(x) = v(x)◦w(x), (5.2a)

v̂k+1(x) =
k

∑
i=1

vi(x)(1−wi(x)). (5.2b)

Afterwards, a pseudo-activation for the unseen class Ck+1 is computed while preserving
the total activation level constant (5.2b). Finally, the rejection is decided on the revised
probabilities of normal classes Ci, 1≤ i≤ k, with regards to the anomalous class Ck+1

(5.3)

pi(x) =
ev̂i(x)

∑
k+1
j=1 ev̂ j(x)

, 1≤ i≤ k+1, (5.3)

where x is anomalous if pk+1 is the highest in pi, 1≤ i≤ k+1 or higher than a threshold
η .

5.2.2 Model quantization and compilation

The quantization step included a post-training process in which a small calibration subset
of 1000 training images was used to analyze the distribution of activations and to limit
the accuracy degradation. Data-Free Quantization (DFQ) algorithm [40] was used in
post training process to equalize the weight ranges and to correct biases in the errors
introduced during quantization.

5.3 Study areas and Datasets

5.3.1 Proposed datasets

Zamora

The Zamora scene contains disastrous wildfires that took place in Zamora, Spain during
June 2022. In Figure 5.2a is shown a false-color image that renders non-visible parts of
the electromagnetic spectrum.
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Fig. 5.2 Zamora scene (Spain, 2022) (a), Bordeaux scene (France, 2022) (b). False color
image format (R: Band 12; G: Band 11; B: Band 8A). The burned areas are highlighted
in brown color.

Bordeaux

The Bordeaux scene contains devastating blazes that took place in Gironde, near Bor-
deaux city. The composition of SWIR bands in Figure 5.2b provides a picture of the
burned areas and reveals areas of ongoing fire.

5.4 Experiments

The spectral-spatial feature extractor, based on a ResNet model [28] with 50 convo-
lutional layers, was trained on the clean version of BigEarthNet (4.1.3), i.e., samples
completely covered by seasonal snow, clouds and cloud shadows were removed. Class
Burnt areas was filtered out from the clean version of BigEarthNet, resulting in a 42
class-nomenclature [47]. The rule 60:20:20 for randomly choosing training, validation
and test datasets was adopted. After training the multi-class classifier, the MAVs were
calculated on the training dataset, for each class, taking into account all samples that
were correctly classified. After finding the MAVs, the distance vectors were calculated
with cosine distance (5.4)

cos(θ) =
A ·B

∥A∥2 ∥B∥2
, (5.4)

where A is the activation vector of an observed sample and B is the corresponding MAV
of the class.

Table 5.1 Anomaly detection accelerator run time for a test collection of 60 samples

Device # threads FPS Run time [s]

XCZU9EG MPSoC
4 77.813±1.726 0.771±0.017
8 888555...666777777±±±000...999555444 000...777000000±±±000...000000777

Tesla K80 GPU multithread 19.861±3.252 3.128±0.744
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Table 5.2 Accuracy assessment of anomaly detector on test datasets

Dataset Device Precision Recall F1-score

Zamora
Tesla K80 GPU 0.823 0.750 0.784

XCZU9EG MPSoC 0.727 0.721 0.723

Bordeaux
Tesla K80 GPU 0.829 0.723 0.772

XCZU9EG MPSoC 0.787 0.683 0.731

In on-board implementation, the target platform is a Xilinx Zynq UltraScale+ MPSoC
ZCU102 evaluation board which combines a powerful processing system (PS) and a user-
programmable logic (PL) into a powerful MPSoC, i.e., Zynq UltraScale+ XCZU9EG-
2FFVB1156E MPSoC. This CPU-FPGA hybrid system was programmed on each part,
the CPU with logic for input and output processing, and the FPGA with execution of
the DCNN architecture. The target application is run on the CPU with Xilinx runtime
application interface calls to manage runtime interection with accelerator.

A line of 60 samples is evaluated on the Zynq UltraScale+ XCZU9EG-2FFVB1156E
MPSoC device in 0.7 seconds (Table 5.1). The best time performance is achieved when
the anomaly detection algorithm is run on XCZU9EG MPSoC device with 8 threads
on the PS side, achieving a processing speed of 81.018 ns/pixel. On the Tesla K80
GPU device, the running time is about 4.46x slower than the best time achieved on the
FPGA device. Furthermore, the power consumed by the Tesla K80 GPU device is 135W
compared to that of the entire Zynq UltraScale+ board which is 30W, resulting in an
efficiency factor of 4.5 for the latter device.

In Table 5.2, the results of the proposed algorithm are highlighted through the
Precision, Recall, and F1-score accuracy metrics. Due to quantization, there was a small
decrease in F1-score metric when the algorithm is run on the embedded platform, i.e.,
0.061 for Zamora dataset and 0.041 for Bordeaux dataset. The anomaly threshold η was
set to 0.5. The Precision metric obtained by running the algorithm on the FPGA device
was 0.727 for the Zamora dataset and 0.787 for the Bordeaux dataset, respectively.

5.5 Contributions

In this chapter, an optimized hardware architecture was designed onto an embedded
MPSoC device, processing all convolutional layers in FPGA logic. The proposed
accelerator achieved a processing speed of 0.7 seconds for 60 samples, which is about
4.46x faster and 4.5x more energy efficient than the GPU design.
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Chapter 6

Conclusions

6.1 Original contributions

In the following, the main original contributions of the thesis are listed:

• The development of two parameter-free models, based on data compression, that
extract conditional and unbiased features from bi-temporal series to determine
binary change maps [C1, J1, J5];

• The development of two deep learning-based anomaly detection approaches that
predict deviant samples from the normal probability distribution of the data,
respectively suppress anomaly reconstruction, in multispectral images [C3, J2];

• A novel statistical anomaly detection model, developed and optimized for an
FPGA device, that estimates the probability that multispectral samples belong to
an anomalous class [J3, J4].

6.2 List of original publications

6.2.1 Journals

[J1] M. Coca, A. Anghel and M. Datcu, "Unbiased Seamless SAR Image Change
Detection Based on Normalized Compression Distance," in IEEE Journal of Selected
Topics in Applied Earth Observations and Remote Sensing, vol. 12, no. 7, pp. 2088-2096,
July 2019, doi: 10.1109/JSTARS.2019.2909143. (Impact Factor:3.784 - Q2)

[J2] M. Coca, I. Coca Neagoe and M. Datcu, "Hybrid DNN-Dirichlet Anomaly De-
tection and Ranking: Case of Burned Areas Discovery," in IEEE Transactions on
Geoscience and Remote Sensing, vol. 60, pp. 1-16, 2022, Art no. 4414116, doi:
10.1109/TGRS.2022.3207311. (Impact Factor:5.6 - Q1)



[J3] M. Coca and M. Datcu, "FPGA Accelerator for Meta-Recognition Anomaly Detec-
tion: Case of Burned Area Detection," in IEEE Journal of Selected Topics in Applied
Earth Observations and Remote Sensing (under review).

[J4] Cavallaro, Gabriele and B. Heras, Dora and Wu, Zebin and Maskey, Manil and Lopez,
Sebastian and Gawron, Piotr and Coca, Mihai and Datcu, Mihai, "High-Performance
and Disruptive Computing in Remote Sensing: HDCRS—A new Working Group of
the GRSS Earth Science Informatics Technical Committee [Technical Committees],"
in IEEE Geoscience and Remote Sensing Magazine, vol. 10, no. 2, pp. 329-345, June
2022, doi: 10.1109/MGRS.2022.3145478. (Impact Factor:7.741 - Q1)

[J5] Mihai Stoica and Mihai Coca, "GPU-Based Normalized Compression Distance for
Satellite Images," in Journal of Military Technology, vol. 5, no. 1, pp. 49-54, July 2022,
doi: 10.32754/JMT.2022.1.07.

6.2.2 Conference proceedings

[C1] M. Coca, A. Anghel and M. Datcu, "Normalized Compression Distance for SAR
Image Change Detection," IGARSS 2018 - 2018 IEEE International Geoscience and Re-
mote Sensing Symposium, 2018, pp. 5784-5787, doi: 10.1109/IGARSS.2018.8518126.

[C2] M. Coca, I. Neagoe and M. Datcu, "Physically Meaningful Dictionaries for EO
Crowdsourcing: A ML for Blockchain Architecture," IGARSS 2020 - 2020 IEEE
International Geoscience and Remote Sensing Symposium, 2020, pp. 3688-3691, doi:
10.1109/IGARSS39084.2020.9324361.

[C3] M. Coca and M. Datcu, "Anomaly Detection in Post Fire Assessment," 2021
IEEE International Geoscience and Remote Sensing Symposium IGARSS, 2021, pp.
8620-8623, doi: 10.1109/IGARSS47720.2021.9554169.

6.3 Perspectives for future developments

In the following, the main future perspectives of this thesis are listed:

• The integration of the ground-based proposed methods into natural disaster man-
agement services such as the Copernicus Emergency Management Service;

• The development of anomaly detection methods using multi-sensor data fusion to
avoid obstacles encountered by optical instruments;

• The improvement of the proposed method for on-board anomaly detection by
increasing the utilization of the FPGA device.
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