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Chapter 1

Introduction

In this thesis, we address the task of using machine learning to make automatic pollen
classification. This is achieved using data from fully automated particle analyzers and
deep learning algorithms. This sort of application can have multiple uses including in:
agriculture, health and climate change monitoring.

Pollen is a part of plants reproductive system. It consist of individual fine grains that
have different shapes and sizes and are produces by the male structures in seed-bearing
plants. This fine powdery substance is transported by insects or by the wind and it
interacts with the female plant structures, where fertilization occurs.

The differences in pollen shape and size are so large that a trained human can identify
the species of plant by pollen alone. Nearly all angiosperms and gymnosperms can be
identified by pollen with the field of study being called palynology or the study of pollen
and spores.

This chapter is subsequently organized as such in section 1.1 we present the impacts
of pollen on quality of life. In section 1.2 the difficulty in building such systems is
presented. Section 1.3 is the motivation of pursuing this work. Section 1.4 deals with the
scope and objectives of this thesis and finally, section 1.5 goes over the structure of the
entire paper.

1.1 Pollen impact on air quality and human health

Pollen is one of the most common triggers of seasonal allergies in humans. Many people
know pollen allergy as "hay fever", but experts usually refer to pollen allergy as "seasonal
allergic rhinitis". Each spring, summer and autumn, and depending on the location event
in winter, plants release millions of tiny pollen grains to fertilize other plants of the same
species. While most pollen is harmless to humans and is transported by insects from one
plant to another, there are certain species of trees, grasses and weeds that use the wind to
transport their pollen. These plants make relatively small, light and dry pollen grains that



are easily picked up by wind and can find their way into eyes, noses and lungs, causing
allergy symptoms for those with pollen allergies.

In recent years there has been a rise in the number of diagnosed cases of allergies
to pollen and in Europe some studies suggest that the number of allergies will double
from 33 milllion to 77 million by 2040-2060 [33]. While the exact cause is still not clear,
some studies linking this rise to climate change [33] or pollution [57]. It is clear that
more accurate monitoring of pollen concentrations and pollen seasons is crucial.

1.2 Problem Description

There are a number of problems that make pollen monitoring difficult with current
devices and techniques.

The first problem with predicting or even identifying pollen in the air. This is difficult
due to the very low concentration it is usually present in so large volumes of air have to
sampled to identify pollen.

The second problem is that there isn’t a simple or clear relationships between the
period a plant will pollinate atmospheric parameters. This would allow for building
predictive models. In order to identify all these relationships there is a need for large
data-sets obtained by first monitoring pollen over many years.

The last problem with current pollen monitoring techniques, is that it is a very time-
consuming endeavour that relies a lot on human oversight. The main types of pollen
monitoring devices rely on humans for weekly or daily maintenance; this limits the size
of a pollen monitoring network and only allows pollen monitoring in densely populated
areas. Usually major urban population centers that have a university or a institution that
can implement such networks.

While this work will not be able to address all of the problems in the pollen mon-
itoring community, it will no doubt help push the topic to a more standardized and
automated way of working.

1.3 Motivation

From the main problems surrounding the task of automated pollen monitoring and
the impact pollen has on human health and well being, the motivation for developing
artificial intelligence systems capable of detecting, identifying and classifying pollen
becomes apparent. Such a work would have a great potential benefit for society at large
and it would allow for a better understanding of a very complex phenomena.

Developing fully automated monitoring systems, and then monitoring networks,
would allow for a much better data acquisition pipeline that could be useful in alerting
people and building prediction models.
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Taking this amount of data and providing another scope than the initial one is a huge
opportunity for the palynology field. The second motivation of this thesis is strongly
correlated to this; namely, using ML techniques to extract new and valuable knowledge.

After investigating further the topic of pollen classification I was surprised that there
is still a heavy reliance on humans for counting and classification of pollen grains, using
microscope imaging. This further motivated me in approaching the topic of pollen
classification and all of the tasks this involves such as data acquisition and building
new data-sets, finding architectures that could be applied to the unstructured pollen data
sources, identifying new ways to train ML models using artificial sample generation and
augmentation and new approaches for image segmentation.

1.4 Research Aims and Objectives

The aims of this work are:
Identifying some of the modern fully automated particle analyzing systems that could

be used for pollen monitoring. This involves a comparison of multiple devices with the
goal of finding several types of devices that provide reliable data, that can operate with
minimum human interaction and that have minimal drift in data distribution to be able to
use them to create historical data sets of pollen.

Create or find data-sets of pollen obtained from a selection of devices that pass the
quality controls. The data-sets should ideally be created using data from multiple devices
(of the same kind). The data should be standardized and cleaned to allow for a wide
range of numerical models to be able to ingest the information as easily as possible.

Developing methods for handling all the different and heterogeneous types of data
that is used to describe pollen particles. Finding ways to use unstructured data (eg.
microscopy images, scattering images, fluorescence spectrum etc.) to identify and
classify the plant that produced a certain pollen type. This would involve finding the best
approaches for feature selection and feature engineering.

Building and training numerical models that can classify pollen to a degree similar
to what human experts are capable of. While this aim is more ambiguous it is almost a
standard first step in any machine learning task to first try to match the performance of
humans and after that try to overcome it.

The final aim of this work is the creation of a number of open-source Python libraries
that would allow the end-user to directly apply these methods and techniques to new
data streams obtained from similar automated devices.

1.5 Structure of the Thesis

The thesis has the following structure: Chapter two, is a literature review of the study
of pollen in general, than a more focused look at the available data sources and instru-
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mentation and a historical overview at all the attempts so far made for automatic pollen
classification and monitoring.

Chapter three, presents the theoretical machine learning frameworks used to construct
and train models that can classify pollen. This chapter looks at the major sub-task
related to pollen monitoring and at methodologies used in general to improve model
performance.

Chapter four, is a case study on a automated particle analyzer that relies on micro-
scope photography to capture pollen information. This chapter presents multiple ways
of classifying pollen in images and all the difficulties this brings.

Chapter five, is a case study on a automated particle analyzer that takes advantage of
fluorescence spectroscopy to obtain data about pollen. In this chapter we look into using
multi-modal data to make pollen classifications.

Chapter six, looks at ways of analyzing and comparing large scale data sets of other
atmospheric parameters that might have a good predictive capability related to the pollen
seasons.

Finally, conclusions are drawn in chapter seven and a overview of all the published
papers related to this work is shown.
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Chapter 2

Literature Review

The Literature Section will touch on a number of topics that are important to the task
of pollen classification and monitoring in general. It starts from a wide description of
the field of palynology, it the moves on to the instruments used for pollen monitoring,
it discusses the pros and cons of existing databases of pollen and finally it looks at the
historical attempts at automated pollen classification using machine learning.

This chapter is structured as follows: First, a brief introduction to palynology is made
in section 2.1. Then we present all the available automated devices capable of pollen
monitoring work in section 2.2. We compare and contrast all of the existing data-sets
of pollen data in section 2.3. And finally we look over the history of automatic pollen
classification and the difficulties encountered so far.

2.1 Palynology

Palynology is literally the "study of dust" or of small particles, be they organic or
inorganic. The classical approach involved the gathering of samples from the air, from
water, or from deposits including sediments by a palynologist. These samples, were
then analyzed to try to find clues to the life, environment, and energetic conditions that
produced them. Palynology as an interdisciplinary science stands at the intersection of
earth science (geology or geological science) and biological science (biology). With the
rise in interest in automated or computer-aided approaches to palynology, the intersection
also involves computer science and machine learning as fields that overlap.

2.2 Pollen monitoring instrumentation

Pollen monitoring instruments can trace their history to the initial experiments of Blakley
in nineteenth century[63]. Blakley was a "hay fever" sufferer and started investigating
his illness in 1859. His experiment were first published in 1873 [63].



These first attempts used glass slides coated in glycerine. These slides were exposed
to the air and after a fixed period of time they were analyzed under a microscope to get a
count for certain species of pollen. This methodology is still currently applied for pollen
monitoring albeit the devices are a little more complex.

The creation of the modern manual pollen trap can be attributed to Hirst and his
seminal paper An Automatic Volumetric Spore Trap in 1952 [26].

Hirst trap [26] was described as a suction trap in which spores enter a narrow orifice,
directed into the wind, and impacted on a Vaseline-coated microscope slide moved across
the orifice at 2 mm/hr. This setup allows for estimates of the spore content of air to be
made with a higher efficiency than by previous traps and at different times of day and
thus more closely correlated with weather variations.

Kramer-Collins spore sampler [31] was an improvement over the original Hirst trap
because it allowed for continuous measurements over longer periods of time.

Burkard spore trap [47] is a more recent version of the Hirst type trap. In this
instrument air is drawn into a 14 mm x 2 mm orifice at 10 liter per minute, and any
airborne particles with sufficient inertia are impacted on either a greased tape or a greased
microscope slide beneath the orifice.

The VPPS made by Lanzoni is the other main descendent of the Hirst trap. This
device is a very versatile and reliable volumetric sampler, manufactured using high
resistant materials to run under severe atmospheric conditions for long time.

The Durham trap [50] is a completely different approach to pollen capture. It is
based on Erdtman’s method [22] from two plexiglass discs 5 mm in width and 22.5 cm
in diameter, with 10.5 cm separation between them. A microscope slide was held in
place with duralumin holders. The slide surface was completely covered with Vaseline
as an adhesive. I does not use any moving parts and relies on wind to bring in pollen
particles.

Another type of pollen capture device is the Rotorod trap [66]. This type of device is
a rotating-arm impactor that recovers airborne particles on two rapidly moving plastic
collector rods. The driving priciples are described in [44].

The GRIPST-2009 is a rotational impactor type pollen trap. Rotational impaction
samplers have become widely used devices when it comes to collecting air-borne par-
ticles. They have a proven to be effective at capturing particles as small as 2 microns
which makes them excellent at capturing pollen or other spores.

Automatic-KH-3000 [60] is a particle counter especially aimed to measure the
number of pollen by using a scattering of a semiconductor material laser beam. KH-
3000 is designed to gather pollen particles effectively through a air-sheet column. The
device measures and discriminates pollen by measuring a forward scattering and a side
scattering with a semiconductor laser beam.

Rapid-E from Plair is a instrument that accurately and comprehensively analyze
single aerosol particles in real time. Fully automated, it characterizes any airborne
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particle in the range of 0.5-100 micrometers, matching and opening up numerous
applications in environmental monitoring, and beyond.

The pollen monitor BAA500 is the first of a future line of fully-automated analysers
for airborne particles and for particles in liquid media. It features automated sampling,
optical detection and measurement, image analysis and archival storage of the samples.
The device automatically extracts pollen grains from the environment with a virtual
impactor, prepares microscopic specimens and analyzes and counts the extracted pollen
grains under an automated light microscope with a dedicated image processing system.

SwisensPoleno is the latest generation of state-of-the-art measuring instruments
for real-time pollen monitoring. With mature technology and network compatibility,
SwisensPoleno enables fully autonomous and stable long-term measurement of local
pollen concentrations [54].

Developed by Pollen Sense LLC, the APS-300 is a fully automated pollen imaging
sensor that collects and images pollen and airborne particles down to less than 5 µm,
in real-time (data reporting delay in <1 min). The APS-300 collects ambient air by
an airflow system at a constant flow rate. The particles in the collected air adhered to
the rotating tape medium, where a proprietary form of optical surface microscopy is
performed. The collection service performs complex proprietary algorithms involving
advancing, focusing, and lighting in order to obtain maximal information about each
particle.

2.3 Pollen Data-sets

This section looks at all the pollen datasets that are publicly available.
The list of pollen data-sets previously used for classification tasks:

• POLLEN13K [8].

• POLEN23E [25].

• POLLEN73S [6].

• POLLEN20L-det .[29]

• Artemisia pollen dataset [39].

• Cretan Pollen Dataset [61].

• Classifynder 46 [58].

• ABCPollen [32].

Data-sets obtained from the automated Rapid-E devices:
Data-sets obtained from automated BAA-500 devices:

7



Dataset Number Number Minimum Number
Name of Classes of Samples Samples per Class
SAU-SRB a 14 85 k 985
SAU-LI a 11 399 k 16,114
SAU-CH a 10 50 k 1,075
MARS b 13 105 k 3,020

Table 2.1 Overview of available datasets from Rapid-E devices. a from [62]; b from [10].

1

• Data-set-15 [56] contains overall 51,277 samples and 15 classes and the originators
obtained an unweighted average precision of 83.0 % and an unweighted average
recall of 77.1 % across 15 classes of pollen taxa.

• Data-set-31 [55] is an expanded version of Data-set-15 but with some extra classes.
In [55] the authors achieved an unweighted average F1 score of 93.8% across 15
classes and an unweighted average F1 score of 75.9% across 31 classes. While
the result on these data-sets are very promising, the main issue still remains that
these classifiers rely on classical image processing methods for segmentation. And
these segmentation methods are not optimal for complex patterns formed by pollen
particles on microscope slides.

• BAA-500 cropped dataset: contains over 45 thousand samples from 19 different
types of particles, 16 pollen, 2 spore types and a class for debris [? ].

• Alternaria segmentation dataset: contains over 3 thousand images with correspond-
ing class mask for Alternaria spores [Citation needed].

2.4 Automatic pollen classification

This section presents an overview of past attempts at pollen classification. The data is
compiled in Table 2.2.
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Classifier Features used Pollen taxa Reported Accuracy Reference
C-SVC (SVM), CST+BOW BOW, color, shape and texture 23 64% [25]
Linear discriminant classifier, CNN Automatic feature extraction 23 97% [58]
Multivariate statistical classification Texture analysis 6 94% [34]
NN, leave-one-out classifier Texture features 4 100% [35]
Mahalanobis distance Color, shape features 30 77% [13]
Mahalanobis distance Color, shape, geometric features 30 88.25% [12]
Regression trees Morphometric features 3 n.a. [38]
SVM Invariant gray-scale features (3D) 26 92% [53]
Linear discriminant analysis Texture/shape 13, 4 100% [36]
MDC Fourier descriptors 3 90% [52]
MDC (majority voting) Texture features (FSM) 5 85%, 87.4% [14]
Nearest Neighbor, SVM Group integration 26, 7 96.9%, 99.7% (SVM) [49]
Linear normal classifier Shape, stat. gray-level, pore/colpus 3 97.20% [16]
SVM/MDC/MLP Texture and shape features 3 89% [51]
Bayesian classifier Invariant features (local jets) 3 83% [46]
Adaptive Bayesian Combination, LLC Texture features, LLT 7 90.58% [69]
MLP Geometric, shape, texture features 3 90% [2]
SVM 3D discrete spherical features 26, 33 96.3%, 91.8% [68]
Mahalanobis distance Color, texture, optical spatial frequency 3, 40 77% [27]
KNN, Gaussian, SVDD Morphological, shape, textural, color 5 92.30% [17]
Linear discriminant analysis Morphological, statistical, three space-frequency 15 99.40% [48]
CNN Automatic feature extraction 30 90% [19]
SVM, Random Forest, Logistic regression Color, texture 23 79% [4]
CNN+RNN Automatic feature extraction 10 100% [20]
CNN Automatic feature extraction 5, 11 99.8%, 95.9% [30]
CNN Automatic feature extraction 11 99.75% [23]
SIFT Local key points (3D) 27, 33, 28 88.25% [64]
Random Forest Geometric, textural 6 88.24% [40]
NN + CNN Flourescence Spectroscopy 11,13,14 74%,77%,80% [62]
CNN + LDC Automatic feature extraction 46 97.86% [58]
NN + CNN Flourescence Spectroscopy 11,13,14 77%,80%,84% [10]
RBF SVM, CNN LBP, HOG, Automatic feature extraction 4 87%, 90% [8]

Table 2.2 Table of the automatic pollen classification attempts.
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Chapter 3

Theoretical Framework

This chapter goes over all of the different types of algorithms and data processing
methods used in this thesis. The role of this chapter is to be a glossary for all of the
technical methods and procedures used through out this work. This chapter looks at
generic algorithm and methods used in computer vision and object detection, with
comments about the changes needed to make a algorithm work on pollen data.

In section 3.1, we discus computer vision; history and evolution.
In section 3.2, we look at classification algorithm in general and how they would

apply to the task of pollen monitoring.
Section 3.3, deals with the procedures used to segment complex images to help in

the detection or identification of pollen.
Section 3.4, presents ways of getting extra performance from ML models by fine-

tuning there parameters and finding the best configuration for a specific task.
Section 3.5, shows the methods to do feature selection and engineering in order to

make complex unstructured data more easy to use with a wide range of classification
algorithms.

3.1 Computer vision

When talking about computer vision we are taking about the ability that allows computers
or other computational systems to extract information from digital images, videos or
other types of unstructured data (Lidar systems, radar systems, sodar systems). From the
perspective of engineering, computer vision seeks to understand and automate tasks that
the human visual system does.

Some of the typical task in the computer vision field are:

• Object recognition or classification – deals with analyzing an image or video for
the presence of an object from a pre-specified catalogue of learned classes. This
can be expanded to identifying the position in the image/video.



• Identification – is the individual identification of instances of objects. Identification
of a specific persons face versus just identifying that a face is present in the
image. Examples include identification of a specific person’s face or fingerprint,
identification of handwritten digits, or identification of a specific vehicle.

• Detection – is when an image is analyzed for the presence of certain learned
conditions. Detection of abnormal cells or tissues in medical imaging, detection
of vehicles at automatic road tolls systems. Detection systems can have multiple
layers. A simple algorithm is used to find regions of interest and then a more
advanced and compute heavy algorithms is used to further process only the areas
of interest.

In the following section we will go over some of the algorithms used for the detection
and classification of pollen.

3.2 Classification Algorithms

This section looks at classification problems in general and what are the main types of
numerical models used in this work. The focus will be on classification algorithms that
have been used for pollen classification.

Linear discriminant analysis (LDA), or normal discriminant analysis is a method
used in statistics and other fields to find a linear combination of features that can be used
to characterize or separate objects or events into classes. The resulting combination can
be used as a linear classifier for new samples.

Quadratic discriminant analysis (QDA), is related to LDA, but it drops the assumption
that measurements from each class are normally distributed, unlike LDA, in QDA there
are no assumptions about having identical covariance between classes.

Support vector machines (SVM), are a class of supervised learning models that can
be used to analyze data for classification and regression. SVMs are a robust prediction
method that rely on finding a hyper-plane that separate elements from different classes.
SVM works by mapping training examples to points in a high dimensional space so as
to maximize the distance between the two categories.

Naive Bayes classifiers, are a family of probabilistic classifiers based on using Bayes
theorem with strong or naive independence assumptions between the input features.

Decision Trees, are used as a predictive modeling approach in many fields. The
method uses a decision tree to go from observations about an object or event to a class. In
the tree structures, leaves represent class labels and the branches represent combinations
of features that lead to those classes.

Random Forest, or random decision forest is an ensemble learning approach based on
using multiple decision trees. These types of meta-models can be used for classification
and regression. For the classification task the outout of the ensemble is class selected
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by the most trees. Random forest correct the main problem of decision trees, that of
overfitting the training data.

The perceptron, is an algorithm for supervised learning of binary classes. The model
has the task of learning a linear threshold function between two classes by looking at
a multinomial combination of the input features. As a linear classifier, the single-layer
perceptron is the simplest feedforward neural network.

While there isn’t a clear distinctions between what constitute a deep learning model
compared to the classical ones. The distinctions relies more on the effect observed when
training such models on large datastes. While the classical models are able to train
on large datasets they suffer from diminishing returns with an increase in data set size.
On the other hand deep learnign models have a much greater model capacity and can
continue to improve significantly with the increase of the dataset.

As an example the multi layer perceptron is an extension of the original perceptron,
with the main difference being that it introduces a non-linear function to act as an
activation function between layers and a number of "hidden" layers between the input
and output.

A multilayer perceptron (MLP) is a family of feed-forward artificial neural networks
(ANN). This type of model is usually fully connected, meaning that all the weights of a
layer are influenced by all the weight of the previous layer. The MLP is feed-forward,
because when in use, the data flows from the input layers to the hidden layers and to
the output layers without any way of higher layers to influence previous layers. While
MLP is used generally to describe any feed-forward ANN, the strict definition refers
only to networks build by stacking multiple perceptrons, with an activation function to
introduce non-linearities. MLPs are sometimes considered basic neural networks and
are the building block for more complex architectures.

An improvement over the MLP, when it comes to computer vision, is the convolu-
tional neural network (CNN). CNN have been developed specifically to be used with
unstructured data such as images, videos or other 2D/3D data. The main advantage over
regular ANN is the significantly reduced number of parameters that have to be trained
due to the shared-weight architecture of the convolution kernels or filters that slide along
the input feature and provide some translation-invariant responses.

Another advantage to CNNs is that they can be used with images without much
pre-processing compared to the methods presented previously. Because all the filters of
a CNN are learned, the model learns also the best pre-processing or feature extraction
for the specific task.

3.3 Segmentation Algorithms

This section looks at image or signal segmentation problems in general and what are the
main types of approaches used.
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When discussing about the segmentation of 2D/3D data there are several definitions
depending on what the desired output is. Semantic segmentation is an approach for
detecting all the pixels belonging to a specific class in an image. For example identify
all the pixels that represent the sky or the ground in an image. Instance segmentation is
an approach that identifies, for every pixel, a object instance it belongs to. It detects each
distinct object of interest in an image but not what class it is. Panoptic segmentation is a
combination of semantic and instance segmentation and it can be used to identify both
the objects and their hierarchical classes.

Thresholding, is one of the simplest methods for image segmentation. This method
is based on selecting a threshold value to turn a gray-scale image into a binary image.
The key aspect of this methods is selecting the right threshold value for the specific task.
Several methods for selecting the threshold value is using maximum entropy method,
balanced histogram thresholding, maximum variance method or even k-means clustering.
While these method work on really simple input images, it is much more difficult to
effectively use for complex images such as microscope images of pollen.

Edge Detection, is well-developed branch of digital image processing. Region
boundaries or objects and their edges are closely related, since there usually is a sharp
adjustment in the intensity at the separation boundary. Edge detection techniques are
usually the base for more complex image segmentation techniques. Edge detection
usually find edges that are disconnected. To segment and object from an image, there
is a need for closed region boundaries. These can be obtained by applying multiple
morphological operations such as dilations and closings to the image with the edges
detected.

Connected-component labeling or connected-components analysis, is the creation of
a labeled image in which the positions associated with the same connected component of
the binary input image have a unique label. This method relies on a pre-processing step
to obtain a binary mask for the image and the it segments the binary mask into regions
that are connected i.e., the flood fill algorithm in any image processing software.

There are also deep learning models capable of doing image segmentation, without
the use of other digital image pre-processing. The advantage of such approaches is that it
frees the user from having to select the best set of parameters for distinguishing between
different objects in images. It moves this task to the model and the model learns the best
way by looking at the input data.

The family of CNNs that are best known for their segmentation power are the fully
convolutional networks (FCN). This type of network uses only convolutionary layers
and its output is of the same size and shape of the input. This means that the network
learns to label each individual pixel in the input image.

U-nets are one such type of network that were developed specifically for biomedical
image segmentation. A U-net is built by adding skip-connections to a fully convolutional
network. This allows for more information to flow from the input side to the output side
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of the network and this makes the network learn faster using fewer training images while
also improving the segmentation.

3.4 Hyper-parameter search

In this section, we talk about the difficulty in selecting the best configuration of parame-
ters for specific model and task and how these settings can be found by doing different
types of searches in the hyper-parameters space.

Hyper-parameters, in general are the configuration or setting that a user has to select
when building a numerical model. These parameters range from the learning rate used
to the numbers of layers in a MLP or the size of the convolution kernels in a CNN.
Because these parameters heavily influence the performance of the final trained model
their selection is a crucial step when developing a machine learning solution.

There are many approaches to finding the optimal setup for a model and task pair but
this can be difficult to find because of the large number of knobs to tweak. If for example
a model can be configured by selecting between 10 learning rates, 10 regularization
parameters and 10 activation functions. The model will have a total of 1000 version that
should be tested to find the best one. This gets incredibly difficult if the hyper-parameter
can take continuous values and if we have a large number of parameters to select from.

The Grid search method, for finding the optimal hyper-parameter configuration relies
on iterating over all the combinations of parameters from a fixed set and training a model
with those parameters. This method realistically works only for simple models with few
parameters or as a training exercises.

Random search, is similar to the grid search but it doesn’t rely on going over all
combination but selecting random values for hyper-parameters and training models with
those settings. This approach does not guarantee that it will find the optimum for a
specific model, task pair but in practice it usually find good enough configurations and
can be considered a starting point for more advanced or guided types of searches.

Even better than a random search is a guided approach, such as Bayesian optimiza-
tion [67]. This approach tries to optimize over the search space by first constructing
a posterior distribution of functions that best describes the function to be optimized.
Then, as the number of observations grows, the posterior distribution improves and the
algorithm becomes more certain of which regions in the parameter space are worth
exploring and which are not.
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3.5 Feature selection, engineering and data augmenta-
tion

Data cleaning refers to the pre-processing steps related to making a data set more uniform
and homogeneous before any analysis. This can involve editing and correcting images,
structuring data and computing data set statistics.

After a data-set has been cleaned, the next step usually involves some amount of
feature scaling.

Even after cleaning a data set and normalizing the features some steps are required
when using classical machine learning. Dimensionality reduction, refers to a family of
techniques that are used to distil the information present in a data set to the smallest
number of features possible. This is done for multiple reasons such as, the more inputs
features available the more difficult it is to find the feature that actually contain useful
about the predicted value. Raw data are often sparse as a consequence of the curse of
dimensionality [Citation Needed], and analyzing the data is usually computationally
intractable.
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Chapter 4

Microscopy images used in Pollen
Classification

This chapter presents the pollen classification results obtained on microscope image
data from the BAA-500 device, from Hund. The BAA-500, device, is an automated
particle monitoring device that was designed to mimic the human approach to pollen
monitoring. While this type of automation is very easy to understand and validate, it
involves more complex steps then just trying to create a new method from the ground up
with automation in mind.

This chapter will look at a number of task surrounding the main pollen classification
task such as image segmentation, feature engineering of complex organic patterns,
using pre-trained large deep learning models and developing new training approaches to
improve performance.

The chapter is structured as follows: Section 4.1, presents setup and the standard
operating procedures of the BAA500 instrument. The raw data and the built-in processing
steps are also discussed here.

In section 4.2, a new microscopy image pollen data-set is presented along with all
the steps done to ensure the quality of the data.

In section 4.3, the classification algorithms used are briefly presented along with
some talk about their setup and training procedure. This section will also touch on
the use of segmentation to enable the use of classifications models using microscope
imaging data that is very heterogeneous.

Finally, section 4.4 presents the result of multiple classification algorithms using clas-
sical segmentation or deep learning enabled segmentation+classification of microscope
images.



4.1 Instrument description

The BAA-500 device is capable of fully-automated analysis of airborne particles or
particles in liquid media. In pollen monitoring, it is used as a feature complete system
that fully automates all steps that were previously made by humans in Hirst type traps
such as sampling, preparation of slides, optical detection and image analysis. In Figure
?? the device is shown in a outdoor environment, the device is housed inside a controlled
atmosphere shelter.

4.2 Pollen Data-set creation

During this work, two data-sets were created. These datasets are related to the two
task that must be tackled when working with the BAA-500 data. One obvious task is
classification of pollen relying on the segmentation and the particles identified by the
BAA-500 software and the second task is first segmenting the raw image data and then
classifying.

The first data-set, contains cropped images that were initially obtained from the
BAA-500 classification and that have been manually verified by pollen experts.

The second data-set, was created by for the segmentation task. More precisely for the
identification of a type of spore that the BAA-500 had difficulties finding in images with
its standard approach. In the following parts the data acquisition steps will be presented,
after that the processing, data augmentation and feature engineering steps are discussed
and finally, an overview of the data-sets is presented.

4.3 Architecture selection

In this section the model types used for pollen classification and microscope image
segmentation are presented. The section is split along the lines of the two complementary
task. We first discuss about the types of models used for pollen classification, with the
assumption that there is a way to obtain the segmented or cropped images. The second
discussion is related to the problem of segmenting the raw images and identifying where
and what we have in those images.

This approach was taken because the BAA-500 device already does a segmentation
of the images and we want a model that can use the cropped images. For the classification
task we want better class accuracy. The segmentation task, is more of an extension to
what the current BAA-500 is capable of identifying.

The final discussion, in this section will be about the metrics that have to be used
when training models to solve the two tasks.
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4.4 Results

For classical approaches to pollen classification we started from the work done by [8].
The data was first re-scaled from the 0–255 range to 0–1 range to make it easier for

the models to train. Our cropped samples were 360×360 in size and a dimensionality
reduction was necessary to accomplish this. We used histogram of gradients (HOG) and
local binary pattern (LBP) as two different feature engineering steps.

Because they showed good results in previous works [8] some architectures were
selected including Support Vector Classifiers (SVCs), Random Forest (RF), Decision
Trees with Adaboost ensemble and Multi-Layer Perceptron (MLP). All of the selected
models come from the sci-kit learn packages and were used with default settings.

Table 4.1 Classification F1 score for classical ML approaches.

MODEL TYPE/FEAT.ENG. HOG LBP
LINEAR SVC 0.46 0.46
RBF SVC 0.29 0.48
RANDOM FOREST 0.46 0.53
ADABOOST 0.41 0.52
MLP 0.47 0.62

The experiments with CNN architectures are split into two groups: i) using a pre-
trained model and fine tuning or ii) training from scratch. When using the pre-trained
model the gray-scale images are treated as RGB images with identical information on
all of the channels, to have the same input shape as the models trained on Imagenet [21].
The fully connected layers, on top of the convolutional part, of each model is replaced
with a Global Pooling layer and a final soft-max layer used for classification. The
convolutional layers are frozen and only the small fully connected part of the network is
trained. The results are good and quite close for most of the models with an exception
being the ResNet50 that suffers the most when pre-trained.

Table 4.2 Classification F1 score for deep architectures.

ARCHITECTURE PRE-TRAINED FULLY TRAIN

USED ON IMAGENET ON POLLEN

VGG-16 0.82 0.90
VGG-19 0.80 0.92
RESNET50 0.59 0.90
INCEPTIONV3 0.85 0.93
XCEPTION 0.86 0.93
DENSENET201 0.87 0.92

To have a comparison between the U-net model and the other CNN architectures
used for classification, we propose an aggregation method to reduce an output mask to
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just one label. The output mask of the U-net is added on the x and y spatial dimensions
leaving a 1×1×20 vector with the highest value in the class that is most present in the
image. The first element of the vector is discarded because it is used for the background.

Using this approach we obtained a classification average unweighted F1 score of
0.95 for the U-net. This is a good way of validating that the model learned more from
the pollen particles than other approaches.

Table 4.3 Classification class mean unweighted class IoU for U-net and variants at
different widths.

U-NET VARIANT W-4 W-8 W-16 W-32
FCN 0.61 0.72 0.71 0.79
U-NET 0.67 0.81 0.85 0.86
U-NET(ADD) 0.65 0.79 0.85 0.88
FCN + RES 0.64 0.78 0.82 0.82
U-NET + RES 0.66 0.78 0.83 0.87
U-NET(ADD) + RES 0.66 0.82 0.83 0.88
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Chapter 5

Multi-Modal fluorescence and
scattering data used in Pollen
Classification

This chapter presents the pollen classification results, obtained on multi-modal data,
from the Rapid-E device , from Plair. The chapter is structured as follows: Section 5.1,
looks at the technical setup of the device and the experimental setup required to obtain
good quality data.

Section 5.2, presents the experimental setup required when creating data-sets that
can be used for developing ml models. This section will also look at the pre-processing
steps, data cleaning and data augmentation available for this sort of configuration.

Section 5.3, looks at what types of models can be trained on the complex multi-modal
data-set created from the Rapid-E particle analyzer. While also looking into maximizing
performance by finding the best model type and model hyper-parameter configuration
for the task of pollen classification.

Finally, in section 5.4 a comparison of all the results is presented. In this part the
advantages and disadvantages of different model types are presented and discussions are
made on what could be the best approach for developing a operational system for pollen
classification using the Rapid-E device. Also some of the limitations of this system are
discussed.

5.1 Instrument description

The Rapid-E device is a automated particle analyzer, developed by Plair. While the
marketing around the device hints at plug-and-play capabilities for pollen classification,
actual real-world usage shows that some setup and calibration is required. The device is
setup in an enclosure that has a air-conditioning unit that protects the instrument from
overheating in the summer and freezing in winter. The device can be placed in most



locations where it has a mains power source. The ideal setup also has a wired internet
connection to allow easy access to the data and to the control software interface, but the
device an operate without internet, as it has sufficient internal storage for multiple years
of data.

5.2 Pollen Dataset creation

Under normal operations, the Rapid-E handles up to 10 thousand particles per minute,
but realistically values never go over 2-3 thousand. This is because the flow rate of the
device is quite low and the concentration of pollen is very small compared to other types
of aerosols. To be able to only capture the information of only particles in the pollen
size range the device uses to types of thresholding. While the Rapid-E, is very good at
operating without human intervention or at the most minimal maintenance once every
2-3 months, to be able to create good quality data sets a good device is not sufficient and
a strictly controlled experimental setup is also required. In this section we will look at
multiple possible experimental setups for creating a pollen data-set, and compare what
works and what doesn’t.

The first set of experiments relied on plants samples that also had the flowering part
of the plant. The initial setup uses a stream of inert N2 gas to act in a similar way to how
pollen gets lifted by the air in the real world.

In the second experimental setup, only pollen grains are used instead of having the
entire plant sample. While this approach is more labor intensive on the pollen gathering
side it guarantees cleaner data-sets because we remove almost all contaminants.

The results of this experiments in creating new pollen data-sets with a Rapid-E device
were also documented and published as a conference paper in 2021 [11].

5.3 Architecture selection

When approaching any new machine learning task the first question that should be asked
is what is the simplest model that is able to accomplish the task with good enough
performance.

The main reasons to approach a problem in this fashion are: We always have a
baseline to compare against, if we start from simple models and increase the complexity
as needed. We can identify some problems with the data-set using simple architectures
instead of trying to over-engineer models to compensate for poor data quality. We can
more easily identify when large models start to over-fit, the training data, because we
can compare against the training and testing performance of both small and large models.
Finally, we might find models that provide sufficient performance early and we can stop
the search for more complex models if we observe we have diminishing returns, with
increase in model complexity.
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For pollen classification, using Rapid-E data, models can be split into two types,
those that need dimensionality reduction and those that can directly use the three features
types from the Rapid-E, the scattering image, the fluorescence spectrum and the lifetime
signal.

The models that need dimensionality reduction to work are: Naive Bayes (GNB),
Quadratic Discriminant Analysis (QDA), Decision Trees(DT), and to a lesser degree
multi-layer perceptron (MLP), which can use the raw data but loose some of the spatial
information present in the features because we have to flatten the 2D arrays. The simple
model implementation is from the Python library sklearn [45]. And the dimension-
ality reduction methods used are Principal Component Analysis (PCA), Independent
Component Analysis(ICA), Gaussian Random Projection (GRP) and Sparse Random
Projection(SRP).

Moving to more complex models the need for dimensionality reduction goes away
as CNNs can directly use 2D arrays as inputs, i.e. images. In Figure ?? the overview of
the CNN model is presented. This model has different convolutional branches for each
of the three feature types. The roles of these branches is to extract the useful information
from the scattering image, fluorescence spectrum and lifetime signal. The common
dense layer part of the network has the role of using the information provided by each of
the feature extractors to make a global classification using all features.

The feature extractors can be further broken down into convolutional blocks. Each
block is built using one or more identical convolution layers with ReLU activations [1],
followed by a batch normalization layer [28] and a max pooling layer [42]. After each
max pooling layer the number of filters in the convolution layer is doubled to allow
the model to cope with the reduction in the dimensionality introduced by the max
pooling operation.

5.4 Results

In this section, we evaluate the results of the trained model and compare to the previous
work performed on this type of classification for all four datasets.

The models used were all built using the insight gained after the hyper-parameter
search. The case of ensembling the Decision Tree was treated separately because there
exists a methods for building ensembles, Random Forest, that relies on the trees being
non-identical.

In Table 5.2, we can see that all models gained accuracy using the best hyper-
parameter configuration found. The gains were not equal across the board with most
of the improvement having been obtained by the models trained on SAU-SRB and
MARS. These were the most difficult datasets when looking at the number of classes.
The increase in performance is more visible when looking at each individual feature
extractor. Comparing rows 5–7 of Table 5.2 with rows 4–6 from Table ??, we can see
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Algo Config/Dataset RO LI SRB CH

GNB
Best Conf. 31% 32% 34% 54%
Ensemble 31% 32% 35% 54%

QDA
Best Conf. 44% 48% 53% 60%
Ensemble 44% 48% 53% 61%

DT
Best Conf. 42% 51% 52% 63%
Ensemble 47% 56% 57% 69%
Rand. Forest 42% 55% 54% 63%

MLP
Best Conf. 63% 71% 67% 73%
Ensemble 66% 74% 70% 77%

Table 5.1 Classification accuracy for all classical models.

that all the feature extractors were much better at making classifications. Examining
the error rate for the scattering image feature across all four datasets, we obtained a drop
from an average of 42% in the initial case to 38% using the best architecture found.
For the fluorescence spectrum, the improvement was event greater, from an average error
rate value of 46% to 37%. Finally, for the lifetime signal, the average error rate across
the datasets decreased from 44% to 40%. In an ideal scenario, these improvements
should translate to an similar improvement in the combined model. However, what we
observed in practice is that the combined model error rate decreased but at diminishing
returns. With the fine tuned architecture, compared to the initially proposed architecture,
we obtained a relative reduction in the error rate of 13%, from 23% to 20%, for SAU-
SRB; of 12%, from 16% to 14%, for SAU-LI; of 13%, from 15% to 13%, for SAU-CH;
and of 20%, from 24% to 19%, for MARS.

Table 5.2 CNN Model performance after hyper-parameter tuning (accuracy).

Data-Set SAU-SRB SAU-LI SAU-CH MARS

Baseline a 74% 73% 80% -

Initial architecture b 77% 84% 85% 76%

Best architecture 80% 86% 87% 81%

Scattering image only 58% 62% 61% 64%

Fluorescence spectrum only 56% 72% 66% 58%

Lifetime signal only 68% 59% 72% 41%
a Results from [62]; b results from [9].
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Chapter 6

Pollen predictive models a future work

While the previous chapters focused on pollen detection, identification and classification,
in this chapter we will look at the methods and methodologies used to predict the pollen
season.

Accurate pollen concentration forecasts are an ideal solution to the problem of
treating and managing allergies. If predictions could be made at a genus or species level
people that suffer from allergies could start taking preventative treatment in advance of
the actual pollen blooms. This would reduce the impact on the quality of life and prevent
life-threatening events.

Pollen forecast try to predict a number of parameters including the entry dates of
phenological phases and the start, peak and end of the pollen season. Also, given enough
data, attempts have been made at predicting the day to day concentrations of pollen for
multiple species.

There are two main types of models that are currently being developed to allow for
pollen forecast: Observation-based models and Phenological models.

Observation-based models make no a-priory assumptions about the relationship
between the pollen concentration and other atmospheric parameters. This class of
models includes regression models, time-series modelling and applications of artificial
intelligence methods to pollen data.

Phenological models try to model the entire life-cycle of the plant that will produce
the pollen. These types of models use atmospheric parameters and observation on
the spatial distributions of certain plant species to make predictions related to the
pollen season and concentration. Phenological models are a type of process-based
models, because they are built on assumptions rooted in experimental results on plant
physiological responses to various environmental variables

In this chapter a number of atmospheric parameters that impact the pollen season will
be discussed along with methods for analyzing long time-series of data. The parameters
selected are important because they can be more easily monitored in an automated and
continuous way compared to pollen monitoring.



A variety of different independent variables have been previously used used to
predict daily average pollen counts, and include minimum, maximum and mean daily
temperatures, rainfall, relative humidity, sunshine hours , wind speed and also direction
and persistence, and the amount of pollen recorded in the previous days.

The chapter is structured as follows: Section 6.1 is a look at ways to monitor relative
humidity or atmospheric water content. With relative humidity being an import an proxy
variable for the start of the pollen season as detailed in [5], [7], [18], [70]. Section 6.2 is
a long term analysis of temperature and UTI in particular. In this section we look at the
rising trend in global temperatures. Section 6.3 discusses freezing rains and the impact
they can have on vegetation. Section 6.4 is a case study regarding an event that involved
snow forming around particles that have been transported over long distance.

6.1 Relative humidity impact on the pollen season

Water is an essential element in plant growth and development, but high levels of relative
humidity and rainfall have a significant impact on the reproductive cycle of plants [5],
[7]. Being able to accurately and consistently measure the atmospheric water content is
an essential part in developing any pollen predictive models.

In this section we will look over some methods for continuous measurement of total
precipitable water (TPW) using a Cimel sun photometer operating at a continental site
in southeast Europe and compare against TPW obtained from a collocated microwave
radiometer and nearby radiosondes during the 2007-2017 period.

6.2 Temperature and the effect on the pollen season

Temperature has a direct link to the start of most plants pollination season[24], [43], [59],
[15]. On top of that the climate of a region heavily influences the spatial distribution of
plant species.

This is why it is important to analyze the trend in the planet warming because this
will impact the pollen season of many plant and will allow the spread of plants that have
historically only been around hot areas to new territories further north.

In this section we will look over methods to analyze the bioclimatology of thermal
stress on large areas and the impact it has on ecosystems. To be able to do this large
datasets are required. These datasets have to be representative for large areas and for
long periods of time. One such dataset is the Universal Thermal Climate Index (UTCI)
derived from ERA5-HEAT reanalysis. While this type of index is used to describe
the heat or clod stress felt by humans it is still a good proxy for the general effect of
temperature on the ecosystem.
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6.3 Freezing rain and impact on vegetation

Freezing rain and frost have a very powerful effect on most plants [37], [65]. Every
autumn, winter and spring many plants run the risk of damage caused by cold weather.
Depending on plant type the damage can be caused by anything from overnight frost or
freezing rain events to prolonged periods with freezing temperatures.

In this sections we look at the atmospheric condition required for extreme cases of
freezing rain in order to be able to predict future events and use this type of data to adjust
pollen calendars. This study started by analyzing the event that took place on 24–26
January 2019, when a high-impact freezing rain event affected parts of southeastern
Romania [3].

6.4 Orange snow and the long range transport of large
particles

This section discusses an unusual phenomenon that was observed over Romania, on the
morning of 23 March 2018. The event was observed centered in the southeastern part
of the country, and it involved a fresh-layer of orange snow. The event was extensively
reported in mass-media and social-media and raised questions about the origin and the
possible impact of the orange snow (Figure ??).

Even though Saharan dust intrusions are a common event in Romania and in Europe,
their occurrence during negative temperature conditions is very rare. Saharan dust
intrusion occurs over Europe mainly during spring and, in general, is not accompanied
by snow at low altitudes.

In this study, [41], an analysis of both synoptic-scale conditions and the chemical
and physical properties of the deposited dust particles was realized. The source of the
dust was confirmed by both the elemental ratios of the main components (e.g., Al, Ca,
Mg, Fe, K) and by using back-trajectories to see the origin of the intrusion. For example,
the (Ca+Mg)/Fe ratio of 1.39 was characteristic for the north Sahara.
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Chapter 7

Conclusion

This chapter has the role to bring together all the work presented in this thesis and to
compare the results to the stated objectives, to put all the realizations in the broader
context of the field and to highlight the personal contribution of the author, to list all of
the published papers done during this PhD and finally, to look at future developments or
future direction of research.

7.1 Objectives and Results

This section looks at the result obtained during the writing of this thesis. The particular
results are split along the chapters where they are presented and discussed.

Chapter 4 is a comprehensive analysis on the ML models that can be used to classify or
segment microscope image samples of pollen from BAA-500 devices.

(a) Building a new public pollen dataset using expert verified data from a BAA-
500 device.

(b) Classification of pollen images using classical machine learning approaches.

(c) Classification of pollen images using pre-trained deep learning models.

(d) Segmentation of pollen particles in microscope images images deep learning
models.

(e) New approach to construct artificial microscope images that can be used to
train segmentation models.

(f) Building new public data set for segmentation of Alternaria spores.

(g) Validating the artificial data training approach on historical data and during a
measurement campaign.

Chapter 5 is a comprehensive analysis on the models that can be used to classify multi-modal,
pollen, data obtained from Rapid-E devices.



(a) Building a new public pollen dataset using data from a Rapid-E device.

(b) Building classical machine learning models capable of classification of pollen
on Rapid-E data for low power use-cases.

(c) Improving on the current state of the art in classification accuracy. on existing
Rapid-E datasets.

(d) Developing data augmentation methods that allow for improvements in
performance.

(e) Identifying efficient setups for hyper-parameter search on large models.

Chapter 6 has the objective of finding independent atmospheric variables that could be used
as either inputs for pollen concentration predictive models or as proxy data-sets
for the pollen concentration directly. In this chapter multiple studies are presented
that relate to these atmospheric variables.

(a) Performed the analysis for the sunshine duration and cloud coverage in order
to determine the biases introduce to Cimel sun photometers. Useful in de-
termining the Total Precipitable Water, an important parameter in predicting
pollen concentrations.

(b) Performed the analysis on Universal Thermal Climate Index (UTCI) derived
from ERA5-HEAT reanalysis to derive the trend for thermal stress over entire
Europe continent.

(c) Performed the analysis on long term radiosonde data to identify all of the
freezing rain events that appeared in Romania for the period 1900 -2000 to
find a methodology to more accuratly predict such events and to be able to
identify exceptional cases.

(d) Development a methodology for fusing LEM images for different chemical
components to create visualisation and help in the identification of particles
transported over long ranges.

7.2 Original contributions

1. Improvements to pollen classification using Rapid-E data in [1].

2. Creating new pollen data-set from a Rapid-E device located near Bucharest,
Romania in [2].

3. Further improvements to pollen classification using Rapid-E data by using ad-
vanced hyper-parameter searches in [3].

4. Search for classical machine learning models that can classify Rapid-E data and
an extensive hyper-parameter search to improve results in [4].
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5. Pollen classification and image segmentation on pollen data from BAA-500 device
in [5].

6. Creating new pollen data-set using data from multiple BAA-500 devices in [5].

7. Developing methodologies for training segmentation models using artificial data
on BAA-500 samples in [5].

8. Building and training models capable of identifying Alternaria spores in Baa-500
data in [6].

9. Performed the analysis for the sunshine duration and cloud coverage in [7].

10. Visualization and analysis of long term data-set development if in [8].

11. Developed the methodology, the processing software and the visualization in [9].

12. Developed the methodology for image segmentation and visualization of electron
microscope data for aerosol particles in [10].
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7.4 Future research

This section is a wish-list of research topics that I would enjoy working on after finishing
the work on this thesis. This list could be structured as a post-doctoral project to add
more to this body of work.

For future work on data from Rapid-E devices the main aspects that remain to be
addressed are:

The identification of architectures that allow better generalization of models, from
the training data to data from other devices of the same kind.

The development of transfer learning techniques between the existing data-sets.
The development of data-set from multiple devices/multiple regions that would allow

for better overall performance.
A validation of the methodologies presented using co-located Hirst type traps as a

baseline.
2Authors with + contributed equally.
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For the BAA-500 device the next steps would involve:
A move from class segmentation for BAA-500 images to panoptic segmentation.

This would allow for better pollen counts as it would be able to segment not just based
on class but also based on instances.

An improvement of the generators used to create artificial images for training, provide
more reliable examples(closer in distribution to the real data).

Develop some segmentation data-sets with multiple classes as opposed to the Al-
ternaria one-class data-set.

A search for more and better image augmentation transformation that can be applied
to pollen microscopy image data.

A multi year analysis of the performance of the segmentation/classification pipeline
developed in this work on multiple devices from multiple locations.
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