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Given a distribution on a smooth manifold, it captures both a certain geom-

etry as well as a specific dynamics. The geometry is given by the corresponding

sub-Riemannian metric, whereas the induced dynamics is given by the horizontal

(admissible) curves.

The main goal of the present Thesis is, on one hand, to investigate the geometry

of rank varying sub-Riemannian structures known as Grushin-type manifolds. On

the other hand, we deal with problems of connectivity (accessibility), by admissi-

ble stochastic processes, corresponding to stochastic perturbations of given distri-

butions. These are natural objects replacing horizontal curves while passing to a

stochastic framework using Wiener processes. In addition, we apply some of our

methods and ideas while studying the Tzitzeica geometry of soliton solutions for

certain PDEs and the Dirichlet energy on immersed tori into the hyperbolic space.

Thus, the present Thesis is naturally situated at the intersection of major fields

such as: Differential Geometry, Partial Differential Equations and Probability The-

ory, having an interdisciplinary flavor.

Regarding the geometric aspect, we provide a detailed study of geodesics cor-

responding to the sub-Riemannian structure induced on Rn by the distribution G,

spanned locally by the vector fields {∂x1 , x1∂x2 , x
1x2∂x3 , . . . , x1x2 . . . xn−1∂xn}.

The main result is a classification Theorem of all sub-Riemannian geodesics be-

tween two arbitrary points on the corresponding Grushin-type n−manifold. The

classification is done with respect to the relative positions of the endpoints. Other

results refer to the length of geodesics and the Carnot–Carathéodory distance, the

number of geodesics joining the origin with an arbitrary point and the number of

intersections of a given geodesic with the canonical submanifolds.

Concerning the problem of stochastic connectivity, our goal is to determine suit-

able controls which steer an admissible stochastic process, such that the probability

of it reaching an arbitrarily small disk, centered at a given point, becomes close

enough to one. We solve this problem for the Grushin plane endowed with a dis-

tribution of arbitrary step. Similar results are obtained for Grushin-type manifolds

and for posynimial distributions.

We also introduce two classes of distributions describing the graphs of solutions

to the quartic interaction PDE. We show that in both cases the Tzitzeica curvature

tensor vanishes on the corresponding submanifolds.
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Lastly, we show that the Dirichet energy, attached to a smooth immersion and

a moving frame on tori immersed in Hn, is bounded below by 2π2.

A sub-Riemannian manifold is a triplet (M,H, g) which consists of a connected,

smooth, n−dimensional manifold M , a horizontal non-integrable distribution H,

and a Riemannian metric g defined on H × H. One of the peculiarities of sub-

Riemannian geometry, in contrast to the classical Riemannian geometry, is the fact

that there can be points arbitrarily close which can be joined by more than one

geodesic. Even by an infinite number of geodesics.

As a research field on its own, sub-Riemannian geometry became during the

80’ties throughout the works of Gromow [48, 49], Mitchell [65], Pansu [73, 74] and

others. Before that period many problems which are now considered to be the

subject of sub-Riemannian geometry were discussed in the context of geometric

control theory, symplectic and contact geometry, diffusion on manifolds, gauge theory

as well as analysis of hypoelliptic operators [47, 63, 79]. To some extent, this state of

affairs has led to the situation in which sub-Riemannian geometry is also known as

Carnot-Carathéodory geometry (Gromow [48], Pansu [73], Strichartz [81]) or non-

holonomic geometry (Vershnik [108], Vranceanu [109, 110, 111]).

For a general introduction into the subject of sub-Riemannian geometry, we

refer the reader to Belläıche and Risler (eds.) [10], Calin [15], Calin and Chang [16],

Montgomery [66].

In this Thesis we are concerned with rank varying sub-Riemannian structures

known as Grushin manifolds [16, 114, 115], also appearing in the literature under

the name of almost-Riemannian manifolds (see Agrachev et al. [1], [2], Boscain

et al. [13]). The subject is still very actively investigated by many authors from

different viewpoints.

For problems with an emphasis on heat kernels of the associated hypoelliptic

operators see for instance Beals et al. [8], Calin et al. [17], Chang et al. [24], Chang

et al. [25, 26].

The relationship between Grushin manifolds and the Heisenberg group, as well as

isoperimetric problems on Grushin plane, are discussed by Arcozzi and Baldi in [3],

by Monti and Morbidelli in [69]. For recent problems related to Grushin structures

on cylinders and spheres, one might consult the recent paper by Boscain et al. [13].

In recent papers by Wu [114, 115] one can find new results regarding the problem

of bi-Lipschitz embedding and the fractal nature of singular hyperplanes of Grushin

manifolds.

The paper authored by Romney [77], motivated as well by the problem of bi-

Lipschitz embedding, introduces a new conformal Grushin structure.
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A comprehensive study of geodesics on the Grushin plane has been done by Calin

et al. [17] and by Chang et al. [24]. Based on the information about geodesics, the

authors have constructed the heat kernel for the Grushin operator

∆ =
1

2

(
∂2
x + x2∂2

y

)
,

with the associated Grushin distribution {∂x, x∂y}. Some generalizations can be

seen also in Chang and Li [25, 26]. The methods and ideas which had been put into

practice in these works are based on earlier papers by Beals, Gaveau and Greiner,

which deal with similar problems for Heisenberg manifolds [7, 8, 46].

Similar ideas have served as starting points for the first part of this Thesis

which is dedicated to the study of geometry induced on Rn by the distribution

G = {∂x1 , x1∂x2 , x
1x2∂x3 , . . . , x

1x2 . . . xn−1∂xn}.
In a more general setting, to a given set of linearly independent vector fields

F = {X1, . . . , Xk}, one associates the second order elliptic operator

∆F =
1

2

n∑
i=1

X2
i + . . .

together with its heat kernel

p(t, x, x0) =

(
1

2πt

)n/2
e−

d2(x,x0)
2

2t

(
∞∑
i=0

ait
i

)
.

Notice that here d(x, x0) denotes the distance between x and x0 and is associated to

the sub-Riemannian metric g, which turns locally the given set of vector fields into

an orthonormal frame. It is worth mentioning that information about all geodesics

is needed in order to construct the heat kernel (see for instance [7]). Finding heat

kernels is sometimes quite challenging. For more details, we refer the reader to

Chavel [27].

Recently, the study of stochastically perturbed sub-Riemannian structures has

been initiated by Calin, Udrişte and Ţevy [21, 22]. Problems raised in these pa-

pers have served as starting points for some topics discussed in the Thesis, namely,

stochastic connectivity by admissible processes and stochastic geodesics. Let us be

more specific about what is meant by this. For simplicity we suppose that the base

manifold is Rn. Given a distribution D, spanned locally by some given tangent

vector fields X1, X2, . . . , Xk, the horizontal curves (controlled trajectories)

x : [0,∞)→ Rn,
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are solutions of the ODE system

ẋ(t) =
n∑
i=1

ui(t)Xi(x(t)). (1)

Very often, especially in applications, one requires a model which takes into ac-

count the random disturbing effects. This technique of adding some ”white noise” to

a ”signal”, has been described, for example, by Calin et al. [21], Evans [37], Øksendal

[72]. There are two ingredients which one uses. The first one is an m−dimensional

Wiener process Wt = (W 1
t , . . . ,W

m
t )

T
, m ≤ n, whereas the second one is a matrix

of functions (needed to control the amplitude) σ = (σij), 1 ≤ i ≤ n, 1 ≤ j ≤ m ,

σij : [0,∞)× Rn × U → Rn×m, where U is the set of admissible controls.

Having at hand these two ingredients one stochastically perturbs the ODE system

(1), turning it into the controlled SDE (stochastic differential equation) system

dxt =

(
n∑
i=1

ui(t)Xi(x(t))

)
dt+ σdWt. (2)

This is a more particular form of a stochastically perturbed Itô - Pfaff system

dxs = b(s, xs, us)ds+ σ(s, xs, us)dWs, (3)

describing the problem of stochastic controlled dynamics (see for instance [34, 35,

37, 72]). Here b : [0,∞) × Rn × U → Rn is some given function and the control

us = u(s, ω) is a stochastic process measurable w. r. t. the σ-algebra generated by

{Ws∧τ , τ ≥ 0}. By solutions to the above Itô–Pfaff system one means Itô processes

xt = (x1(t), x2(t), . . . , xn(t)) ,

such that

xt = x0 +

∫ t

0

b(s, xs, us)ds+

∫ t

0

σ(s, xs, us)dWs. (4)

Thus, the basic idea is to replace horizontal curves, defined by the ODE system

(1), by admissible stochastic processes defined by the SDE system (2).

Once the admissible stochastic processes are defined on a sub-Riemannian man-

ifold, one of the first problem to consider is that of stochastic connectivity (acces-

sibility). This would be the stochastic analogue of the Chow-Rashevskii Theorem

on connectivity of sub-Riemannian manifolds (see [30, 78]). This problem, to our

knowledge, has been first formulated and motivated by Calin et al. in [21] and has

been further generalized in [86] and in [90]. In this Thesis, problems of this kind are

solved for a class of Grushin-type manifolds.
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It is important to point out that in the stochastic setting, the boundary condi-

tions need to be adjusted as well. More precisely, given two arbitrary points P and

Q, the probability that an admissible process starting at Q, can be steered such that

it hits the point P is almost zero. Hence, it is only required that the admissible

process reaches an arbitrarily small neighborhood of P .

Going one step further, one might become interested in admissible processes

satisfying some optimum criteria. Such processes can be interpreted as ”stochas-

tic geodesics”. There are various ways to approach this problem. Here we adopt

the viewpoint from Calin et al. [22], which makes use of the stochastic Hamilto-

nian introduced by Udrişte and Damian [32, 92], solving the problem of stochastic

geodesics for the Grushin plane. In this Thesis we discuss this kind of problems

for an arbitrary step Grushin distribution on the plane, as well as for certain sub-

manifolds described by solutions to the quartic interaction PDE. More precisely,

our achievements in this direction are the SDE systems, describing the stochastic

geodesics, analogous to the canonical equations of Hamiltonian mechanics. Solving

these systems is quite challenging, although numerical methods are applicable.

One of the most famous results which naturally links the fields of Differential

Geometry, Partial Differential Equations and Probability Theory is perhaps Varad-

han’s large deviation formula (see [107])

lim
t→0
−4t log p(t, x, y) = d2(x, y).

It relates the heat kernel p(t, x, y) to the distance on a compact Riemannian man-

ifold. This result has been generalized for Dirichlet spaces (for a survey, see for

instance [4]) by Ariyoshi and Hino [5], Hino and Ramirez [52], showing that

lim
t→0
−4t logP (X0 ∈ A;Xt ∈ B) = d2(x, y),

where Xt is the Markov process attached to the regular Dirichlet form. There are

three objects which come into play: a generic ”Laplacian” (a second order elliptic

operator), its associated heat kernel and a Wiener process, or more generally, a

Markov process.

The behavior of a Wiener process (standard Brownian motion), in a probabilistic

sense, is determined uniquely by the initial distribution and by the transition law

from one state to another. This is the case for any Markov process (see for instance

Chung [31]). There are two possible ways to specify the transition law. Namely, by

its infinitesimal generator or by the transition density function.

To illustrate the above said, let us look at Brownian motion on n−dimensional
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Euclidean space Rn. Its infinitesimal generator, in this case, is the Laplacian

∆ =
1

2

n∑
i=1

∂2

∂x2
i

,

whereas the density function is the Gaussian heat kernel

p(t, x, x0) =

(
1

2πt

)n/2
e−
|x−x0|

2

2t .

The law of Brownian motion which starts at a given point x0, denoted by Px0 ,
defines a probability measure on the space of continuous paths C(R+,Rn). This can

be done, for example, by applying Dynkin’s formula (a stochastic generalization of

the second fundamental theorem of calculus),

Ex0 [f (Xt)] = f(x0) +
1

2

∫ t

0

∆f (Xs) ds,

where X denotes the coordinate process on the space of continuous paths, i.e.,

X(ω)t = Xt(ω) = ωt, ω ∈ C (R+,Rn) ,

and Ex0 is the expected value. Thus, Dynkin’s formula defines uniquely the measure

Px such that the coordinate process has the Gaussian density function and is a

Markov process. The paths of Brownian motion can be thought as the characteristic

lines of the Laplacian ∆.

When passing to Riemannian manifolds, the role of the Laplacian, as the in-

finitesimal generator of Brownian motion, is taken over by the Laplace-Beltrami

operator. Quite a lot is known about Brownian motion on Riemannian manifolds

(see for instance [56, 57, 82]), meanwhile a similar theory for sub-Riemannian man-

ifolds is still developing. This Thesis aims to contribute in this direction as well.
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Original contribution

In Chapter 1 of the present Thesis, entitled The geometry of Grushin-type

manifolds, we investigate the geometry induced by the distribution

G = {∂x1 , x1∂x2 , x
1x2∂x3 , . . . , x

1x2 . . . xn−1∂xn},

on the real n−dimensional manifold Rn.

The sub-Riemannian metric g = (gij), corresponding to the distribution G, is

given by g11 = 1, gij = δij (x1 . . . xi−1)
−2

, i = 2, . . . , n, where δij is Kroneker’s

delta, and is defined only outside the hyperplanes {xi = 0}. The resulting Grushin

manifold in this case is the triplet Gn = (Rn,G, g).

The original contribution of Chapter 1 is as follows. Theorem 1.4.3 describes the

case when there is a unique geodesic joining two arbitrarily given points. Theorem

1.4.4 provides the lengths of geodesics giving the Carnot-Carathéodory-Vrănceanu

distance. The main result of the Chapter is Theorem 1.5.4, which gives a complete

classification of sub-Riemannian geodesics. More precisely, we establish the con-

ditions under which the number of geodesics between two arbitrary points is one,

countably infinite, and finite respectively. Theorem 1.6.1 provides the number of

intersection points of an arbitrary geodesic with the canonical submanifolds and

Theorem 1.6.3 establishes the number of geodesics joining the origin with an arbi-

trary point. Lemma 1.5.3 and Lemma 1.6.2, respectively, are important technical

results.

The original results, for a three dimensional case, are published in [89] (T.

Ţurcanu, On sub-Riemannian geodesics associated to a Grushin operator, Appl.

Anal., ID: 1268685 (if 0.815)). These results add up naturally to ones obtained

previously by Beals et al. [8], Calin et al. [17, 19], Chang et al. [24], Chang et al.

[25, 26].

The distribution G being bracket generating, the global connectivity by hori-

zontal curves is guaranteed. In other words the Carnot-Carathéodory-Vrănceanu

distance on Gn is finite. The next step is to look for curves minimizing this distance

(called henceforth geodesics). These are obtained by projecting, onto the base space

Rn, the bicharacteristic curves of the Hamiltonian function

H(x, p) =
1

2

n∑
i,j=1

gijpipj =
1

2

(
p2

1 +
(
x1
)2
p2

2 + · · ·+
(
x1 . . . xn−1

)2
p2
n

)
,

defined on the cotangent bundle T ∗Rn. The solutions of the canonical Hamiltonian
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system provide the equations of the geodesics. These are

xn(t) =
1

4

(
Cn−1

Cn

)2 [
2ϕn−1(t)− sin (2ϕn−1(t))−

(
2ϕ0

n−1 − sin
(
2ϕ0

n−1

))]
,

ϕi(t) =
1

4

Ci+1C
2
i−1

C3
i

[
2ϕi−1(t)− sin (2ϕi−1(t))−

(
2ϕ0

i−1 − sin
(
2ϕ0

i−1

))]
+ ϕ0

i ,

xi(t) =
Ci
Ci+1

sin (ϕi(t)) ,

pi(t) = Ci cos (ϕi(t)) , i = 2, . . . , n− 1,

where x1(t) = C1 sin (C2t+ α1) , ϕ1(t) = C2t+ α1, and Ci, ϕ
0
i are constants.

The case when there is only one geodesic connecting two arbitrary points is

described in the following (the numbering appearing in the brackets is the same as

that of the main text)

Theorem (1.4.3). If C2 = 0 and xk0 6= 0, k = 2, . . . , n, then xk0 = xk1 and there exists

a unique geodesic

x : [0, 1] −→ Rn, x(t) =
((
x1

1 − x1
0

)
t+ x1

0, x
2
0, . . . , x

n
0

)
,

connecting the points P (x0) and Q(x1), of length

` [x(t)] = |x1
1 − x1

0|.

The length of an arbitrary geodesics, which is used to compute the Carnot-

Carathéodory-Vrănceanu distance, is given by the next

Theorem (1.4.4). With the above notation and definitions consider C2 > 0. Then,

the length of a geodesic x(t) is

` [x(t)] = C2|C1|.

The main result of the first Chapter, which classifies the geodesics according to

the position of the endpoints, is as follows.

Theorem (1.5.4). Let P (x0) and Q(x1) be two given points in the Grushin space

Gn. The number of geodesics joining them is

i) one, if xi0 = xi1 6= 0, ∀i = 2, . . . , n;

ii) countably infinite, if there exists i ∈ {1, . . . , n− 1} such that xi0 = xi1 = 0;
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iii) finite, if otherwise.

The number of intersection points of an arbitrary geodesic with the canonical

manifold, for the three dimensional case, is determined by the following

Theorem (1.6.1). Let P (x0, y0, z0) and Q(x1, y1, z1) be two points in G3 and let

x(t) be a geodesic joining them. The number n, of intersection points of the given

geodesic

i) with the plane yOz, is

n =



[
C2

π

]
+ 1, for α = 0

[
C2 + α

π

]
−
[α
π

]
, for α ∈ (−π, π) \{0};

ii) with the plane xOz, is

n =


[ϕ1

π

]
+ 1, for ϕ0 = 0

[ϕ1

π

]
−
[ϕ0

π

]
, for ϕ ∈ (−π, π) \{0};

iii) with the Oz axis, is |Γψ ∩ T|, where, respectively,

Γψ = {(t, ψ(t)) ∈ R2| ψ(t) =
1

2
p3C

2
1 t+

1

4
p3C

2
1 sin 2α + ϕ0},

T = {(lπ,mπ) ∈ R2| 0 ≤ l ≤
[
C2 + α

π

]
, 0 ≤ m ≤

[ϕ1

π

]
}.

The last theorem of the Chapter, which provides the number of geodesics starting

at the origin and reaching a point outside the canonical manifolds, is stated as

follows.

Theorem (1.6.3). With the above notation and definitions, let the point P be at the

origin and let Q(x1, y1, z1) be a point such that x1y1 6= 0, and denote by ϕ1, . . . , ϕn

the solutions of the equation µ(ϕ) =
2z1

y2
1

. Then,

i) the number n is given by

n = 2

[
2z1

πy2
1

]
+ sgn

(
2z1

y2
1

− π
[

2z1

πy2
1

]
− arctan

(
2z1

y2
1

))
,
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ii) the number of geodesics between P and Q is N = m1 + · · ·+mn, where

mi = 2

[
2ϕiy1

πx2
1 sinϕi

]
+ sgn

(
2ϕiy1

x2
1 sinϕi

− π
[

2ϕiy1

πx2
1 sinϕi

]

− arctan

(
2ϕiy1

x2
1 sinϕi

))
, i = 1, . . . , n.

In the second Chapter, entitled Stochastic connectivity on a perturbed

Grushin distribution, we prove a stochastic connectivity property for a stochas-

tically perturbed step k + 1 Grushin distribution. The main result of the Chapter

is Theorem 2.3.2, which provides suitable control functions steering any admissible

processes, starting at a point P , such that the probability of it striking any arbitrar-

ily small disk centered at a point Q, becomes close enough to one. Corollary 2.4.1

extends the main result to the case when both endpoint conditions are expressed in

probabilistic terms.

The original results of this Chapter are published in [86] (T. Ţurcanu, C. Udrişte,

Stochastic perturbation and connectivity based on Grushin distribution, U. Politeh.

Bucharest Sci. Bull. Ser. A, 79, 1 (2017), 3-10 (if 0.365)), naturally extending the

results of Calin, Udrişte and Ţevy [21].

The first (geometric) ingredient is the bracket generating, step k + 1, Grushin

distribution {∂x, xk∂y}, k ∈ N∗, defined on the real plane. The second (stochastic)

ingredient, is a 2−dimensional Wiener process (standard Brownian motion).

Let U1 denote the set of deterministic (open loop) controls, i.e., controls u(s, ω) =

u(s) not depending on ω, and let U2 denote the set of Markov controls, i.e., functions

u(s, ω) = u0(s, xs(ω)), such that u0 : Rn+1 → U ⊂ Rk. Following Calin et. al [21],

a stochastic process cs = (x(s), y(s)), which satisfies the SDE system{
dx(s) = u1(s)ds+ σ1dW

1
s

dy(s) = u2(s)xk(s)ds+ σ2dW
2
s ,

with u1, u2 ∈ U1 ∪ U2, will be called admissible stochastic process.

In order to define the connectivity in the stochastic setting we have to make the

above mentioned adjustments. Given a stochastic process Xt, starting at a given

initial point P , it is clear that the probability of Xt striking another point Q at

T > 0, is zero. Therefore, we have to leave the endpoint XT free and consider an

arbitrarily small disk centered at Q.

The stochastic connectivity property, with respect to the stochastically perturbed

Grushin distribution, is established by the following
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Theorem (2.3.2). Let P = (xP , yP ), Q = (xQ, yQ) be two points in {R2,DG} and

denote by D(Q, r) the Euclidean disk of radius r, centered at Q. Then, for any

ε ∈ (0, 1), and r > 0, there exists a striking time t <∞ and an admissible stochastic

process cs, satisfying the boundary conditions

(x(0), y(0)) = (xP , yP ) , (E [x(t)] ,E [y(t)]) = (xQ, yQ) ,

such that

P (ct ∈ D(Q, r)) ≥ 1− ε.

As one can notice, in the above Theorem, the endpoints of an admissible stochas-

tic process do not play exactly the same role. More precisely, the initial condition

is given in deterministic terms, whereas the final configuration is expressed in prob-

abilistic terms. The main result can be restated such that the endpoints become

interchangeable.

Theorem (2.4.1). Let P,Q be two arbitrary points in {R2,D}. Then, for any

r1, r2 > 0, 0 < ε1, ε2 < 1, there exist t1 and t2, respectively, and an admissible

stochastic process cs, satisfying the boundary conditions

(E [x(t1)] ,E [y(t1)]) = (xP , yP ) , (E [x(t2)] ,E [y(t2)]) = (xQ, yQ) ,

such that

P (ct1 ∈ D(P, r1)) ≥ 1− ε1, P (ct2 ∈ D(Q, r2)) ≥ 1− ε2.

The last Section of Chapter 2 addresses the problem of stochastic geodesics on

the corresponding Grushin 2−manifold. We obtain the SDE system describing the

geodesics and, surprisingly, find out that there are no deterministic controls which

can solve the problem (Proposition 2.5.2).

In Chapter 3, entitled Stochastic accessibility along a perturbed posyn-

omial distribution, we continue the study of accessibility problems associated to

sub-Riemannian structures. This time a much wider class of distributions is consid-

ered, namely, posynomial distributions.

The main result of the Chapter is Theorem 3.3.2, which is an accessibility (con-

nectivity) result analogue to Theorem 2.3.2.

The main result together with Lemma 3.3.1, are published in [90] (T. Ţurcanu, C.

Udrişte, Stochastic accessibility on Grushin-type manifolds, Statist. Probab. Lett.,

125 (2017), 196-201 (if 0.506)). Let us mention that in [90] the setting is slightly

modified. The base manifold is Rn, whereas the distribution has integer exponents.
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Our main geometric ingredients are as follows. The base manifold is the space of

strictly positive n−tuples Rn
+ := {x = (x1, . . . , xn)| xi > 0, i = 1, . . . , n}, on which

the posynomial distribution P is defined locally as the span of the vector fields

X1 = µ1(x)∂x1 := ∂x1
X2 = µ2(x)∂x2 := xk11 ∂x2
X3 = µ3(x)∂x3 := xk11 x

k2
2 ∂x3

...
...

...

Xn = µn(x)∂xn := xk11 x
k2
2 . . . x

kn−1

n−1 ∂xn .

The corresponding sub-Riemannian metric g, in this case, is defined as g11 = 1,

gij = δij

(
xk11 . . . x

ki−1

i−1

)−2

, i = 2, . . . , n. Nevertheless, it is not used in Chapter 3

as its corresponding topology is equivalent to that of the Euclidean metric (see for

instance [43]). Hence, for our purposes, instead of Carnot-Carathéodory-Vrănceanu

disks we may use Euclidean disks. Recall that the problem of accessibility in a

stochastic framework requires the endpoint of a process to be left free.

As before, putting together the posynomial distribution with an n−dimensional

Wiener process (W 1
s , . . . ,W

n
s ), yields a stochastically perturbed Pfaff system. The

admissible stochastic processes are defined correspondingly. The main result of

Chapter 3, reads as follows.

Theorem (3.3.2). Consider two arbitrary points in Rn
+, denoted by P = (xP1 , . . . , x

P
n )

and Q = (xQ1 , . . . , x
Q
n ) respectively, and let D(Q, r) denote the Euclidean disk of ra-

dius r centered at Q. Then, for any fixed ε ∈ (0, 1) and r > 0, there exists a time

t <∞ and an admissible stochastic process xs, such that

P (xt ∈ D(Q, r)) ≥ 1− ε,

and which satisfies the boundary conditions

x0 = P, E [xt] = Q.

In Chapter 4, entitled The geometry of solutions for quartic interaction

PDE, we study the interplay between PDEs and Differential Geometry from another

perspective and we discuss some questions in a stochastic setting as well. The

main ingredient this time is a completely integrable smooth distribution, a semi-

Riemannian base manifold and a d’Alembertian.

We are interested in the geometric properties of graphs of functions arising as

solutions for the quartic interaction PDE. We discuss two classes of solutions. The
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first one is the class represented by soliton solutions, whereas the second class con-

sists of solutions of a certain first order PDE system, which generates the quartic

interaction PDE, in the sense of least squares action.

The main results are Theorem 4.3.1 and Theorem 4.4.3, which show that in both

cases the graphs of solutions are Tzitzeica flat, i.e., the associated curvature tensor

vanishes. We also have Theorem 4.4.2 which shows that the quartic interaction

PDE can be generated using a least squares type action. At the end of the chapter

we introduce the notion of stochastic geodesics on graphs of soliton solutions and

obtain the SDE system describing them.

The original results of Chapter 4 are published in [87] (T. Ţurcanu, C. Udrişte,

Tzitzeica geometry of soliton solutions for quartic interaction PDE, Balkan J. Geom.

Appl., 21, 1 (2016), 103-112).

The Klein-Gordon equation is a fundamental equation of the Quantum Field

Theory. It can be altered in such a manner that the solutions of the modified

version, which is called quartic interaction PDE, are fields with quartic interaction

(see for example [76]). The quartic interaction PDE, defined on the four dimensional

Minkowski space-time , writes as

�u := u11 − u22 − u33 − u44 = µ2u− λu3,

where µ is the mass term, λ is the (strictly positive) coupling constant, and � is the

d’ Alembert operator (with c = 1). The graphs of soliton solutions are at the same

time integral manifolds of the distribution D, spanned locally by the vector fields

Y1 = (1, 0, 0, 0, k1Y (u)) , Y2 = (0, 1, 0, 0, k2Y (u)) ,

Y3 = (0, 0, 1, 0, k3Y (u)) , Y4 = (0, 0, 0, 1, k4Y (u)) ,

where k1, k2, k3, k4 are some constants and Y (u) is a certain function of u.

The first important result of Chapter 4 is the following

Theorem (4.3.1). Let S be an integral manifold of the distribution D. Then

i) the components of the Tzitzeica connection are

Λγ
αβ = hγσY 5

σ

∂Y 5
α

∂u
Y 5
β = (hγσkσ) kαkβ (Y )2 ∂Y

∂u
,

ii) the curvature tensor of (S,Λ) is identically zero.

The next result shows that a certain first order normal PDE system is a generator,

in the sense of least squares action, of the quartic interaction PDE. Namely,
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Theorem (4.4.2). i) The quartic interaction PDE is an Euler-Lagrange prolonga-

tion of the system 
∂xi

∂tα
= δiα = X i

α(x(t)), i, α = 1, 2, 3, 4,

∂x5

∂tα
= X5

α(x(t)).

ii) There exist infinitely many suitable geometric structures and infinitely many vec-

tor fields which realize the above prolongation.

The relevance of the above system relies on the fact that its solutions solve the

quartic interaction PDE as well (for more about this approach see [95]-[105]). The

distribution D′, associated to this system, has precisely the same form as D, with a

certain function X(u) replacing the function Y (u). The statement of the Theorem

4.3.1 is true for the distribution D′ as well.

In Chapter 5, entitled Dirichlet frame energy on a torus immersed in Hn

we study the boundedness of the Dirichlet energy attached to moving frames on a

torus immersed a hyperbolic space. We also introduce a stochastic version of the

Dirichlet energy.

The main result of Chapter 5 is Theorem 5.2.1, together with Corollary 5.2.2,

showing that the Dirichlet energy associated to a pair consisting of an immersion

and a moving frame, is bounded below strictly by 2π2. Analogous bounds were

obtained by Mondino et al. for immersions into Rn [64] and Topping [83] for the

n−Sphere.

The original results of this Chapter are published in [88] (T. Ţurcanu, C. Udrişte,

A lower bound for the Dirichlet energy of moving frames on a torus immersed in

Hn, Balkan J. Geom. Appl., 20, 2 (2015), 84-91).

The starting point of our study in Chapter 5 is an abstract torus denoted by T,

a smooth immersion ϕ : T ↪→ Hn, n ≥ 3 and a moving frame on ϕ(T), which is a

pair of sections in the tangent bundle x = (x1,x2).

The pullback metric, denoted by h := ϕ∗gHn , is induced naturally by the immer-

sion ϕ. The Dirichlet energy associated to the pair (ϕ,x), is the functional

D(ϕ,x) =
1

4

∫
T
|dx|2dµh, (5)

with d being the differential of the frame.

Following Mondino et al. [64], we reduce the problem to the case of coordinate

moving frames associated to smooth immersions of flat tori. Our main result is the

following
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Theorem (5.2.1). Consider a smooth conformal immersion ϕ : Σ ↪→ Hn, n ≥ 3 and

let x be the attached coordinate moving frame. Then the following inequality holds

true

D(ϕ,x) =
1

4

∫
Σ

|dx|2dµh > π2

(
b+

1

b

)
1

1 + cot2 θ cos2 θ
. (6)

As a corollary, we obtain that the Dirichlet energy is bounded below by 2π2 .
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Diff. Geom., 32 (1990), 819-850.
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[88] T. Ţurcanu, C. Udrişte, A lower bound for the Dirichlet energy of moving frames

on a torus immersed in Hn, Balkan J. Geom. Appl., 20, 2 (2015), 84-91.
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